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ABSTRACT

In  degenerate n*(p*) — p(n) — X(xX) = GaAs(1 —x)Te(x) -
crystalline alloy, 0<x <1 , various optical, electrical and
thermoelectric laws and Stokes-Einstein-Sutherland-Reynolds-Van
Cong relations, enhanced by: the optico-electrical phenomenon (O-EP)
and the electro-optical phenomenon (E-OP), our static dielectric
constant law given in Equations (1a, 1b), our accurate Fermi energy
expression given in Eq. (11), and finally our conductivity model given
in Eq. (18), are now investigated, by basing on the same physical
model and the mathematical treatment method, as those used in our
recent works.™® One notes that, for x=0 (1), this crystalline alloy is
reduced to the n(p)-type degenerate GaAs (GaTe)-crystals. For the
physical conditions, as those given in Eqg. (15), one remarks that the
optical conductivity, o, obtained from the O-EP, has a same form with
that of the electrical conductivity, given from the E-OP, og, as those
determined in Eqg. (20a), but og > of since my(x) < m¢q,)(x), M)
and m,., being the unperturbed reduced effective electron (hole) mass in

conduction (valence) bands and the relative carrier mass, respectively.
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Then, by basing on our optical [electrical] conductivity models, oqg), given in Eqg. (18), the
diffusion-mobility-viscosity-activation energy-Fermi energy relations are determined, and
their numerical results are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an
equivalence between the degeneracy-and-viscosity concept in this X(x)-degenerate (viscous)

crystalline alloy.

KEYWORDS: Conductivity, Mobility, Viscosity coefficient, Diffusion coefficient,
Activation energy, Fermi energy.

INTRODUCTION

In the n*(p*) — X(x) = GaAs;_,Te, -crystalline alloy, 0<x<1, x being the
concentration, the optical, electrical and thermoelectric coefficients, enhanced by : (i) the
optico-electrical phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our
static dielectric constant law, £(rqc,), X), rqca) being the donor (acceptor) d(a)-radius, given in
Equations (1a, 1b), (iii) our accurate reduced Fermi energy, &, (), given in Eq. (11), accurate
with a precision of the order of 2.11 x 10~*[), affecting all the expressions of optical,
electrical and thermoelectric coefficients, and (iv) our optical-and-electrical conductivity
models, given in Eqg. (18, 20a), are now investigated by basing on our physical model and
Fermi-Dirac distribution function, as those given in our recent works.*® It should be noted
here that for x=0 (1), the present obtained numerical results are reduced to those given in the

n(p)-type degenerate GaAs (GaTe)-crystals."**!

Then, some important remarks can be reported as follows.

(1) As observed in Equations (3, 5, 6a, 6b), the critical impurity density Ncpncpp), defined
by the generalized Mott criterium in the metal-insulator transition (MIT), is just the
density of electrons (holes), localized in the exponential conduction (valence)-band tail
(EBT), NEpn(cop)» being obtained with a precision of the order of 2.89 x 1077, as given
in our recent work.l®! Therefore, the effective electron (hole)-density can be defined as:
N* =N — Nepneeop) = N — N&hcppy - N being the total impurity density, as that
observed in the compensated crystals.

(2) The ratio of the inverse effective screening length kg (spy to Fermi wave number kgpip)

at 0 K, Rgn(spy(N™), defined in Eq. (7), is valid at any N*.
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(3) For given [N, rqc, %, T], the coefficients: ogg)(E), Kog)(E), € o) (E), and g (E),
are determined in Equations (18, 19b-19d), as functions of the photon energy E, and then
their numerical results are reported in Tables 3-8, being new ones.

(4) Finally, for particular physical conditions, as those given in Eq. (15), one observes that
the optical conductivity oy has a same form with that of the electrical conductivity, o, as
those given in Eq. (20a), but o > of since m.(x) < mc(y)(X), M) and my, being the
unperturbed reduced effective electron (hole) mass in conduction (valence) bands and the
relative carrier mass, respectively. Then, by basing on those ogg) -expressions, the
diffusion-mobility-viscosity-activation energy-Fermi energy relations are determined, and
their numerical results are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an
equivalence between the degeneracy-and-viscosity concept in this X(x)-degenerate

(viscous) crystalline alloy.

In the following, various Sections are presented in order to investigate the conductivity, the
mobility, the viscosity coefficient, and the activation energy, expressed as functions of the

Fermi energy, given in the degenerate (viscous) n*(p*) — X(x)- crystalline alloy.

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the degenerate n*(p*) — X(x)- crystalline alloy, at T=0 K*®!, we denote : the
donor (acceptor) d(a)-radius by rqc,), the corresponding intrinsic one bY: ryg(ae)=Tas(ca)
respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:
gc(v) » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by m¢«)(x)/m,, m, being the free electron mass, the relative carrier mass by: m.(x) =

mc(X)Xmy(X)

me () +my ()

< m,)(x) for given x , the unperturbed static dielectric constant by: £,(x), and

the intrinsic band gap by: E,, (), as those given in Table 1, reported in Appendix 1.

*

Here, the effective carrier mass my,,

(x) is equal to m(y)(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

Edo(ao)(x):13eoo><[[sm(cg])2(x)/mo] meV , and then, the isothermal bulk modulus, by :
_ Edo(ao)(x)

B ) =mm s

do(ao) (%)X(rdo(ao)f
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Our Static Dielectric Constant Law [my, ) (x) = m¢y(x)]
Here, the changes in all the energy-band-structure parameters, expressed in terms of the
effective dielectric constant e(rq(,), X), are developed as follows.

At gy = I'doao), the needed boundary conditions are found to be, for the impurity-atom

volumes: V = (4m/3) x (rd(a))3 and Vgo(ao) = (41/3) X (rdo(ao))3 , according to the
pressures : p, p, = 0, and to the deformation potential energies (or the strain energies) : «a,

a, = 0. Further, the two important equations, used to determine the a -variation, A @ =

d_p:_Bdo(ao)(X) da P . . id_a Bdo(ao)(x) Then

—a, = a, are defined by : v v and p=—7, » giving rise to: dV(dV)

by an integration, one gets :

3
) Edo(ao) (X) [ d(a) - 1] X

rdo(ao)

[Aa(rd(a):X)] Bdo(ao)(x) X(V Vdo(ao) )x In (

n(p)
In (M)?) >0
Tdo(ao) -

Furthermore, we also showed that, as rqg) > I'qo(ao) (Td(a) < 'doao)). the compression

Vd()

(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gp)(rd(a),x), and
the effective donor (acceptor)-ionization energy Eqa) (rd(a),x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rd(a), X)]n(p)’

2
So(x)
Egngp)(Tda), X) — Ego(X) = Eqa)(Taa) X) — Edoao)(X) = Edo(an)(X) X [ s(rd(a))) - 1] =

+ [Aa(rd(a),x)]n( )

for I'q(a) > I'do(ao): and for I'q(a) < I'do(ao):

2
(x)
Egnep)(Td@a), X) — Ego(X) = Eqa)(Taa) X) — Edoao)(X) = Edoao)(X) X l s?roa;)> B 1] -

— [Aa(rd(a), X)] n(p) .

Therefore, one obtains the expressions for relative dielectric constant e(rq(,), x) and energy

band gap Egn(gp)(Tacay X), as :

€0 (X)

3 3
Td(a) ( T'd(a) )
1 —1(x1
+[(rdo(ao)) ]X n T'do(ao)

< g,(x), being a new

(i)-for rqcay = raoaoy, Since s(rd(a),x):\/

S(I'd(a), X)‘IaW,
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r a 3
Egn(gp) (rd(a):X) - Ego(X) = Ed(a) (rd(a)’x) - Edo(ao) (X) = Edo(ao) (X) X [(L) - 1] X

T'do(ao)

In ()" > o, (1)

Tdo(ao)
according to the increase in both Egpgp)(Tacay, x) and Eqcay (racay, x), With increasing rqca)

and for a given x, and

(ii)-for Tagay < Tdoqaoy » SINCE €(raay %) = ol - > £,(x), Wwith a
_|( Fa@ \'_ Fd(a)
\/1 [(rdo(ao)) 1]Xln(rdo(ao))
it ; . rd(a) d(a) ; -
condition, given by: [(rdo(ao) 1] X ln do(ao)) <1, being a new &(rgca), X)-law,
3
gn(gp) (rd(a): X) Ego(x) = Eq() (rd(a): X) Edo(ao) x) = —Edo(ao) (x) X [ rd:gi) - 1] X
rd(a) <
In (rdo(ao)) - 0' (1b)

corresponding to the decrease in both Egpgp)(Tacay, X) and Eqcay(raca), x), With decreasing

rq) and for a given x.

It should be noted that, in the following, all the optical, electrical and thermoelectric

properties strongly depend on this new &(rg(a), x)-law.

Furthermore, the effective Bohr radius agngp) (raca), X) is defined by:

a)’ h? a)’
@O _ 53 % 1078 cm x Snd@) 2)

a lgapX) E - : ’
Bn(Bp)( d(a) ) M}, ) () xMoxq? My, ) (%)

where =g, according to an electron charge equal to : -e

Generalized Mott Criterium in the MIT [m},)(X) = mcq,) (X)]
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepn(npp) (Ta(a), X), Was given by the Mott’s criterium, with an empirical parameter,

M, ., ast] :

n(p)

1
Ncpn(epp) (Tacay %) /3 x apn(p) (Tdca)y X) = Mnp), Mpep) = 0.25, 3)

depending thus on our new &(ryca), X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rgp(sp),m. in the Mott’s criterium, being characteristic of interactions, by :
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1
3

_ 3
Fsn(spM(N = Neon(cop) (Faay %) Tagay X) = <4nNCDn(CDp)(rd(a),X)) %

1

aBn(Bp) (rd(a)'x) -
2.4813963, )

for any (rqca), x)-values. Then, from Eq. (4), one also has :

1
1 3)\3 1
Nepn(cop) (Tagay %) /3 X apn(ep) (Taca), X) = (E)S X zas13963 ~ 022 = Map, ©)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M) = 0.25, according to the empirical Heisenberg parameter
Hypy = 0.47137, as those given in our previous work™, we have also showed that
Ncpn(cpp) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail ,  Nghicpp . With a precision of the order of
2.89 x 1077 ,respectively.”! So,

Ncpnnop) (Td(ay, X) = NEEE(CDp) (Taca), X)- (6a)

It shoud be noted that the values of My, and H, ., could be chosen so that those of

Nepn(eppy @nd NEp 1 cpp) are found to be in good agreement with their experimental results.

Therefore, the effective density of electrons (holes) given in parabolic conduction (valence)

bands, N*, can be defined, as that given in compensated materials:

N*(N, gy, X) = N = Nepnvop) (Taay, X) = N = Népiepp) (Fagay, ¥) = 0. (6b)

One notes here that, with increasing rq(, and for given x and N, N¢pnnpp) (Taca)) increases,

as observed in Ref.”®!, and therefore, N*(rqca)) decreases.

In summary, as observed in our previous paper[3], for a given x and an increasing rq,),

e(raca), X) decreases, while Egno(gpoy(Tacay %) Nepnvop) (Faca), ) and NEp L cpp) (Facay, X)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the degenerate n* (p™) — X(x) -crystalline alloy, the reduced effective Wigner-Seitz (WS)
radius rg,(sp), Characteristic of interactions, being given in Eq. (4), in which N is replaced by

N*, is now defined by:
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kEﬁ(F ) 38c(v) 1/3 1
Xr N*r xE—p<1, r N*r XE(—) X —
¥ X Tsn(sp) (N, Taca) X) Bn(Bp) sn(sp) (N, Taay X) ppren a5np) Ta(a)X)

1

2Nn*\ 3
3N )3 is the Fermi

being proportional to N*~"/3. Here, y = (4/9m)3, Kenqrpy(N*) = (gcm

wave.

Then, the ratio of the inverse effective screening length kg, (sp) to Fermi wave number

Kenkp) 1S defined by:

 — Ksnsp) _ Kengep) -
Rsn(Sp)(N ) = k:l;r;) = ks‘:l(s; = RanS(spWS) + [RsnTF(spTF) - RanS(spWS)]e fsn(sp) < 1,
(7)

being valid at any N*.
Here, these ratios, Rsntr(sprr) and Rgqws(spws), can be determined as follows.
First, for N> Nepnwpp)(faa),X) . according to the Thomas-Fermi (TF)-

approximation, the ratio R, rr(sprr (N*) is reduced to

— KsnTF(spTF) kErll(Fp) 4YTsn(sp)
Rsntrsprr (N*) = — == = <1, (8)
Fn(Fp) snTF(spTF) n

being proportional to N*~*/°,

Secondly, for N < N¢pnnpp) (fagay). according to the Wigner-Seitz (WS)-approximation,

the ratio Rs,ws(snws) is respectively reduced to

_ Ksnspyws 3 d[’”z XECE(N*)]
Ron(spyws(N*) = ZHEWS — 0.5 x (2 — y2mep e ), (%)

Where Ecg(N*) is the majority-carrier correlation energy (CE), being determined by:

0.87553 2[1-1n(2)]
: xIn(r -0.093288
E (N*) _ —0.87553 0.0908+rsn(sp) ( 2 ) ( sn(sp))
¢e 0.0908+Tsn(sp) 1+0.03847728xr /378876

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

N*
kg U kg 21TX(gc(v))
Fn(Fp) np _— 1 Fn(Fp) _ * —
< = — =R <1 , U N* rga),x) = ——
anBp)  EFno(Fpo)  Anm)  Ksn(sp) sn(sp) n(®) ( d@ ) &(rgca)X)
A*Kon(any (9b)
H H * EFno(Fpo)(N*) * — thk%n(Fp)(N*)
which gives: A N* rgca), X) = ———>—— E N* rqca),X) = ————2—,
g n(p) ( d(a) ) [Un(p)(N*'rd(a)'x) Fno(Fpo) ( d(a) ) 2xm}, ) (x)xmg
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Here, one remarks that: (i) the generalized Thomas-Fermi energy [Un(p)(N*, rd(a),x) can thus
VN*

e(rgcayX)’

be approximately expressed as: C X C being a constant, and (ii) Uy (Trac))

increases with increasing rqc,) and for given x and N, since e(rq(,)) decreases, as given in

Ref.l’l

BAND GAP NARROWING (BGN)
First, the BGN is found to be given by:

AEgn(gp)(N*' Td(a), x) =

£0(x)
S(rd(a)rx)

£0(x)
S(Fd(a)rx)

5 1 3
= 1 - 1 - 1
Eo(x 4 m 2 go(x 2 5 go(x 2 -
[ o) ] X | xN;+2a4x[ o) xN§+2a5><[ o _I* N5, N, =
g(racayx) my, ) (%) £(racayX) £(racayX)
N
9.999x1017cm~3’

a; +

1 1
X N3 +a, X X N2 X (2.503 X [—Ecg(Tsn(sp) )] X Tsnespy) + @z X

(10a)

Here, for AEg,n(N*,rq,X), One has: a; = 3.8 x1073(eV), a, = 6.5x 107*(eV), a3 =
28x1073(eV) , a,=5597%x10"3(V) , and as=81x10"%EV) , and for
AEg,n(N¥,15,%), One has: a; =3.15 X 1073(eV), a, = 5.41 x 107*(eV), a3 = 2.32 X
1073(eV), a, = 4.12 x 1073(eV), and a5 = 9.8 x 10~5(eV).

Therefore, at T=0 K and N* = 0, and for any x and rq(,), one gets: AEg, ) = 0, according

to the metal-insulator transition (MIT).

Secondly, one has:
AE gy gp) (T, x) = 1074T? x [Z209% 4 5408G-9)] (eV), (10b)

T+94 T+204

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
degenerate p* — X(x)-crystalline alloy, in order to obtain the same one, as given in the
degenerate n* — X(x) - crystalline alloy, according to the reduced Fermi energy

Efngrp) » &npy(N* Tag), % T) = EF“(F")(:B?(Z")'X'T) > 0(< 0), obtained respectively in the

degenerate (non-degenerate) case.
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For any (N*, rqc), %, T), the reduced Fermi energy &,,)(N*, rqc), X, T) or the Fermi energy
Epnerp)(N*, Tq@), X, T), obtained in our previous paper™™, obtained with a precision of the

order of 2.11 x 1074, is found to be given by:

Epn(p W _ G+AUPFW _ V(u)
Enpy (W) = — A = way A = 0.0005372 and B = 4.82842262, (11)

N*

where u is the reduced electron density, u(N*, rqay, %, T) = Nero (T0)'
cv)\h

Nc(v)(T' X) = ch(v) X

3 2

(Wf (cm™3), F(u) = aus (1 +bu’s + cu_g)_s, a= [3‘/E/4]2/3’ b= %(g)z

2mh2

_ 62.3739855 (n)

1920 and G(u) = Ln(u) + 2~ 2><u><edu d—23/2[ ]>0

So, in the non-degenerate case (u <« 1), one has: Epyepy(u) = kgT X G(u) = kgT X Ln(u)

as u — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

2
S A2 XK rpy(N*)
2><m:1(p)(x)><m0

8

2 4
one gets: Eppeppy(u > 1) = kgT X F(u) = kgT X aus (1 +bu s+ cu_§)

FH(FP)

as u — oo, the limiting degenerate condition. In other words, &, = IS accurate,

and it also verifies the correct limiting conditions.

In particular, as T— 0K, since u* -0, Eq. (11) is reduced t0: Epporpo)(N*) =

A2 XK rp)y(N¥)
me;(p) (X)xmg

, proportional to (N*)#3, noting that, for a given N*, Epyo(rpo) (m;(p)(x) =
mr(x)) > Efno(Fpo) (m;(p) (X) = M) (x)) since m,.(x) < mcy,)(x) for given x. Further, at

T=0 K and N* = 0, being the physical conditions, given for the metal-insulator transition
(MIT).

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of En(p)(N*, Td(a) X T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E) = (1 +e¥)™ !, y= (E—
Eneep))/(kgT).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™® is found to be given by:

_ P _ (o of o 1 e¥
(EP)eppr = Gp(Brnen) X Epnqep) = [0 B X (= 55) dE. - — 5= o x i
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Further, one notes that, at 0 K, —— = 8(E — Egno(rpo))» S(E — Egno(epoy) being the Dirac

delta (8)-function. Therefore, Gp(EFno(Fpo)) =1.

Then, at low T, by a variable change y = (E — Egn(gp))/(kgT), One has:
= -p © B
GP(EFn(Fp)) =1+ Epygp X I wm (kTy + EFn(Fp)) dy =1+ Z“ 12,..Cp X

(kgT)® x EFf(Fp) X Ig, where CE =plp—-1..p—B+1)/B! and the integral Ig is

given by:

0 yBxeY yB
IB = f

Tz dY = f_wmdy, vanishing for old values of B. Then, for even

values of B = 2n, with n=1, 2, ..., one obtains:

_ 1) y2n><ey
IZn =2 fo (1+eY)2 dy .

Now, using an identity(1 +e¥)™2 = Y% ,(—1)5*1s x e¥S~1| a variable change: sy = —t,
the Gamma function: f0°° t?"e"tdt =T (2n + 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 22" 11?®|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I,, = (22® — 2) X ™2™ X |B,,|. So, from above Eq. of (EP)gppr, We get in

the degenerate case the following ratio:

(EP) (p-1).. 2n+1
Gp (Bn(rp)) = Tpnf = 14 3P BEDeE2t0 o (220 2) ¢ [Ban| X 2" = G ()
Ebn(Fp) (2n)!
(12)
Wherey = L = g T noting that Gy, (y = et _ T )=1,

Enp)(N"Ta@XT)  Eenep)(N“ra@xT)

andas T— 0K, Gp>4(y = 0) » 1.

ErnFp)  n(p)

Then, some usual results of G,-4(y) are given in the Table 2, reported in Appendix 1,
suggesting that, with increasing T (or decreasing T) and for given (N, rg,x), since &, (T)

decreases (or increases), the function G, (T) increases (or decreases).

OPTICAL-AND-ELECTRICAL PROPERTIES

Optico-Electrical Phenomenon (O-EP) and Electro-Optical Phenomenon (E-OP)
In the degenerate n* (p*) — X(x)-crystalline alloy, one has:

(i) in the E-OP, the reduced band gap is defined by:

EgnZ(gPZ) = Egn(gp) - AEgn(gp)(l\l*'rd(a)'x) - AEgn(gp) (T,x), (13)

WWw.wijert.org 1SO 9001: 2015 Certified Journal 201




Cong. World Journal of Engineering Research and Technology

where the intrinsic band gap Egp(gp) is defined in Equations (1a, 1b), AEggp)(N*, racay, x)
and AEgy,gp) (T, x) are respectively determined in Equations (10a, 10b), and (i)
in the (O-EP), the photon energy is defined by: E = Aw, and the optical band gap, as:

Egni(gp1) = Egna(gp2) T Ern(rp)-

Therefore, for E = Egn1gp1) (Egn2(gp2)). the effective photon energy E* is found to be given

by:

From above Equations, one notes that: E* = [E — Egn1(gp1)] = Egn(rp), given in the O-EP, if

E = [Egni(gpn) + Ernep)] = Egngmo and My (x) = my(x), and E* = E — Egna(epa) =
Epnerpy » given in the E-OP, if E = [Egnz(gp2) + Ern(ep)] = Egngpe and myy(x) =
My (%), noting that Epyep)(mp (%)) > Egncep) (M) (%)), since m,(x) < mey(x), for a
given X. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*™) — type degenerate n*(p*) — X(x) -

crystalline alloy, Egp(gp), are well defined.

Optical Coefficients
The optical properties for any medium, defined in the O-EP and E-OP, respectively,

according to: [mj,y = m(x)[mey(x)]] , can be described by the complex
refraction: Nog) = nopg; — ikopgy » o and  Kopg) being the refraction index and the
extinction coefficient, the complex dielectric function: Eqg) = €1 og] — i€z 0[], Where
i2 =—1, and Eog] = NO[E]Z. Further, if denoting the normal-incidence reflectance and the
optical absorption by Rq(g) and <), and the effective joint parabolic conduction (parabolic
valence)-band density of states by:

JDOS(p) o[E] (E,N*, rqaay % T) =

. 3/2
1 2m? .\ (X) E-E (E )
7z X (—“fg) ) X /Eno(Fpoy(N*) X [E_[E gni1(gp1) “gn2(gp2) , and

gni(gp1) (Egnz(gpz))‘l'EFn(Fp) _EFno(Fpo)]

hg®x|v(E)|?

7.
, one gets!?:
NoJE] (E)XCEXS(rd(a)'X)XEfree space g

Forg (E) =
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&1 (E) = IDOS,(p) ofs (B X Fopg) () =~ E® _ 2Bxcom®) _

hc no[g)(E) hc
41oog](E)
cng g (E)X&(rg(a) X)X Efree space,
. [n 1] +x
£10(5)(E) = nojr)® — Xo(r)% €2 o) (E) = 2Ko(gNofg), and Rojg)(E) = —- o (163)

n [E]+1] +Ko [E

One notes here that, at the MIT-conditions: N* = 0, both Egn1(gp1)(Egn2(gp2)) =Egn(gp)

according to :

[ E-Egnigp1) (Egn2(gp2))

2
0
= - for E=E ,
E‘[Egnl(gpl)(Egnz(ng))“‘EFn(Fp)‘EFnO(FpO)]] 0 gn(ep)

2
E-E (E ) )
[ gni(gpt) _Enz(gp2) ] =1 for E 2 Egygp), S0 that, in such the MIT,
E:_[Egnl(gp1)(Egnz(gpz))"‘EFn(Fp)_EFno(Fpo)]

3

. 1 2my ) (x)\2 .
]DOSn(p)O[E](E,N yTd@) X T) =53 X (%) X \/EFno(Fpo)(N =0)=0, for E=

Egn(gp): which is largely verified since Nepnvpp) (Facay X)= Nepn(cp) (Faga) X) OF
Egn2(gp2) (Neonavopy: T = 0K) = Egnagpay (NGB (cppy T = 0K) 2 Egn(gp), @s those given in
Equations (6a, 6b). In other words, the critical photon energy can be defined by: E = Egp(gp).
Then, Eq. (6a) states that Ncpncpp), given in parabolic conduction (parabolic valence)-band
density of states, is just the density of electrons (holes) localized in the exponential
conduction (valence)-band tail, NEpicpp). With a precision of the order of 2.89 x

107 ,respectively.®®! Therefore, for E = E the exponential conduction (valence)-

gn(gp)
band tail states can be approximated with a same precision to:

3

. 1 2my .,y (x)\2 .
JDOS; 011 (B N, Taga), %, T) = 7z X (%) X JEFno(Fpo)(N = Ncpn(npp))- 16)

Here, €free space = 8.854187817 X 10‘12(N:—fnz) is the permittivity of the free space, -q (<0)

is the charge of the electron, |V0[E](E)| is the matrix elements of the velocity operator
between valence (conduction)-and-conduction (valence) bands, and our approximate
expression for the refraction index ngg; is found to be defined by:

24 Xi(Egn1(gp1)) XE+Yi(Egn1(gp1))
E2-B;E+C; '

(E N* yTd@a)y X T) = N (rd(a):X) + a7

. - w
going to a constant as E — oo, since n(E = ©0,14(a), X) = N (Tq(a) X) = /€(Ta@), X) X m—z

given in the well-known Lyddane-Sachs-Teller relation, in which wr =~ 5.1 x 103 s™1 and
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wy, =~ 8.9755 x 1013 s~1 are the transverse (longitudinal) optical phonon frequencies, giving
rise to: noo(rd(a),x) ~ ’s(rd(a),x) X 0.568.

: 2

Here, the other parameters are determined by: X;i(Egni(gp1)) = % X [—BZ—‘ + Egn1(gp1)Bi —
A Bi X (Egn1(gp1)+Ci) /4ci—BiZ

Eénl(gpl) + Ci]v Yi(Egnl(gpl)) = Q X [ - 12gp1 — 2Egnigpn)Cif, Qi = 2

fori=(1, 2, 3, and 4),

A; = 4.7314 x 107%, 0.2313655,0.1117995,0.0116323 , B; =5.871,6.154,9.679

13.232, and C; = 8.619,9.784, 23.803, 44.119.

, Where,

Now, the optical [electrical] conductivity oggj can be defined and expressed in terms of the

2 2

kinetic energy of the electron (hole), Eyx = ﬁ k being the wave number, as:
n(p) °
1
2
oo (k) = 1:: X ksnl;p) X [k X aBn(Bp)] X (%)2 (45==). which is thus proportional to
Ei,
2 - - -
where —— = 7.7480735 x 10~° ohm™" and Uy ,)(N", raca), ) is determined in Eq. Eq.
(9b).
. kg T 2

Then, we obtain: (E*)pppr = Go(y = E:anp)) X Efnrpy » and Gp(y) = (1 + y;) =

G (N*, rga), %, T), with y = %m Enp) = &npy(N", Tacay, x, T) for a presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function H(N*, rgca), %, T) by:
H(N* rgca), % T) =

[an(Fp) (N

t l:F F IJ x * Fno F])O (II*)
sn(sp) (N*) n(p =

Un(p)(N*rgcayx)

G, (N*,rq(a), %, T), which can be approximately expressed in terms of: EZ,p0)(N) X

GZ(N*, rqa)y % T) X M

—, since as noted in Eq. (9b), Uy, (N*, racay, x) is approximately
(N*)2
i

expressed as: C X ,
£(rg(a)X)

C being a constant. Thus, with increasing rq(,) and for given x, T

and N, the function H(rq,)) therefore decreases since £(rqc,) decreases, as noted in Ref.[3].
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Then, our optical [electrical] conductivity models, defined in the O-EP and E-OP,
respectively, for a simply representation, can thus be assumed to be as:
60(E N*,rg),x T) =

E-E

2
gni(gp1)
and
_[Egnl(gpl)+EFn(Fp)—EFn0(Fp0)]] (.Q.Xcm)

2
—— X H(N",rq(a), %, T) X [E

GE(E, N, rqca), X, T) =

E-Egna(gp2)

(Egn2(gp2)"'EFn(Fp)‘EFnO(FPO)]] (Qxcm

L X (Nt %, T) X |- (18)

It should be noted here that:

(i) oo (E = Egni(epn) [Egn2egpz)]) =0 . and  ogpe (E - ) — Constant for  given

(N, rqca), % T) —physical conditions, and

(i) as T> 0 Kand N* = 0 [0r Egyo(rpo)(N*) = 0],according to: H(N*, Td@a) % T) =0, and

for a given E, [E— Egyygp)] = [E — Egnegpy] =Constant, then from Equations (16-18),
g (E)= Constant, oo (E) = 0, ko_gp(r—op](E) = 0, & o[ (E) = (ns,)? = Constant,

g2(E) = 0, and g (E) = 0.

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains all the analytically results as:

|v(E)|? 8m2h Ken (po) (N*)
v = = 3 L l F (Fp)(N* an(Fp)(N ) X aBn(Bp) (rd(a),x)]
(Zmr)zx\/m Rsn(sp)
G (N*, rq(a), %, T), (19a)
2

n(E)Xe(rq(a)X)X€free space XE

2
[ E-Egni(gpn) ] and
E- [Egnl(gpl) +EFn(Fp) _EFno(Fpo)]

2g® * E-Egna(gp2) 2
KE(E) = X H(N ) rd(a),x, T) X E ]

n(E)Xg(rg(a)X)X€free space XE E_[ gn2(gp2) TEFn(Fp) —EFno(Fpo)
(19b)
which gives: kogej(E = Egnigp)[Egnacgp]) = 0, and kopg; (E = ) — 0, as those given in

Ref. [2],

2

E-E
and

2
g20(E) = = X H(N", ra(a) %, T) X [E [E —

€(rd(a)X) XEfree space XE —[Egn1(gp1) +EFn(Fp) _EFno(Fpo)]
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2

gn2(gp2) 19
C
gnz(gpz)+EFn(Fp)_EFno(Fpo)] ’ ( )

E-E

4q? "
g,5(E) = 1 X H(N", rq(a), %, T) X [E—[(E

€(rd(a)X)X€free space XE
which gives: e,0_gp(ze-0p](E = Egn1(gp1)[Egn2(gp2)]) = 0, and &;0_gpze—op)(E = ©) -

0, as those given in Ref.?,

Xg (E) =

4° X H(N* T) X [ E—Egni(gp1) 2 ( 1 ) d

r X — an

hen(E)xe(raga)X)Xefree space @ E~[Egn1(gp1) +Ern(rp) ~Ernorpo)]]  \em
xg (E) =

4q? .

X H(N*, rqeq),X% T) X

hen(E)Xe(Td(a),X) XEfree space ( d(a) )

E-E 2

s P g
E_[(Egnz(gpz)+EFn(Fp)_EFno(Fpo)] cm/’

which gives: oqg; (E = Egn1(gp1) [Egnz(gpz)]) =0,and &g (E - o) - Constant.
Furthermore, from Equations (16, 17, 19b), we can also determine & o[g)(E) and Rog; (E).
Now, from Equations (18, 19b, 19c, 19d), using Eq. (15) as E = Egp(gpyorg;, One obtains

respectively, as:

2
. qz N Egn
0_O(N yTd@), % T) = nxh X H(N yTd@)y X% T) X ( R > (Qxlcm)’

EFno(Fpo)

having the same form with that of og(N, rgc),x T) [1], as:

* 2 * Epn 2
O-E(N lrd(a)rxr T) = ﬁ x H(N 'rd(a)’x’ T) X ( TTp) > ( - )' (203.)

EFno(Fpo) 2xcm

noting here that for given (N*, Td(a) X T) -physical conditions we obtain: oo > of since

m,(x) < Me(y) (%),

2

Ko(N* rgea), % T) = X H(N*, rqca, %, T) X
0 ( d() ) n(E) X€(rd(a)X)XEfree space X(Egn1(gp1) T EFn(Fp)) ( d() )
2
(—EF“(F")) and
E:Fno(Fpo)
. 2q? .
KE(N BEIOR T) = X H(N »Tdga) % T) X

n(E)Xe(rd(a)X)XEfree space X(Egn2(gp2) tEFn(Fp))

(M)Z, (20b)

E:Fno(Fpo)
4q?
€(rq(a)X)X€free space X(Egn1(gp1) TEFn(Fp))

2
X H(N*, rqa), % T) X (—EF““’") )

EFno(Fpo)

&y O(N*, I'd(a),X, T) =

and
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4q?

€(rq(a)X)X€free space X(Egn2(gp2) tEFn(Fp))

2
€2 E(N*' Td(a), X T) = X H(N*, Iqa) X T) X (—EFH(Fp) )

EFno(Fpo)

2

4q
20c X (N*,r32),% T) =
( ) 0 ( d(a) ) hen(E)Xe(rga)X) X Efree space
2
E 1
(ﬂ) (_) and
Efno(Fpo) cm

Xg (N*, rd(a): X, T) =

X H(N*, rqa), %, T) X

4q?

hen(E)Xe(rqayX) XEfree space

2
X H(N' rag 3, T) % (52252 ) (L), 20d)

EFno(Fpo)

Further, from Equations (16, 17, 20b), we can also determine &; o(gj(E) and Rog) (E).

Now, going back to Eq. (20a), one remarks that, as noted above for the function

H(N*, rac, %, T), the function ooz (N*, rqc), %, T) can thus be approximately expressed in

terms of EZpp)(N",Taca), %, T) X Go(N*, rgca), X, T) X ~——=— , being proportional to:
(N4

13
G2(N*, g% T) X _[e(rge), x) X (N)1z at low T and high N, giving raise to some

concluding remarks as follows.

(1) With increasing rq(,) and for given x, T and N, since as observed in Ref.”l, g(rqe))
decreases, thus o (rd(a)) decreases, as observed in Tables 9n and 9p given in Ref.™

(2) With decreasing T and for given x, N and rg(y), since G,(T) decreases as noted in Table
2, thus oo (' T) decreases, as observed in Tables 9n and 9p given in Ref.[!

(3) With increasing N and for given x, T and rq(,), as noted above, ogg (N) increases, as

observed in Tables 9n and 9p given in Ref.l!

OPTICAL [ELECTRICAL] PROPERTIES [myj, ;) = m(x)[mcqy,) (X)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by:

N T) in —2 d the L ber L by L=2x () =
oth. og](N", Ta@), %, T) In g an e Lorenz number y: —?x(?) =

2.4429637 (WXK"zhm) = 24429637 x 1078 (V2 x K~2), then the well-known Wiedemann-

Frank law states that the ratio, @ due to the O-EP [E-OP], is proportional to the

O[E]]

temperature T(K), as:
oth.o[E](N".rq(a) % T) =LxT. (21)
oo[E)(N"Td(a)xT)
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Further, the resistivity is found to be given by: pog|(N*, rgca), X, T) = 1/00g) (N, raa), % T),

noting again that N* = N — Ncpnnpp) (Tdca), X)-

In Eq. (20a), one notes that at T= 0 K, oo[g)(N*, rgca), %, T) is proportional to Eéno(Fpo), or to

(N*)%.Thus , from Eq. (21), one has: oo (N =0,r4@),xT=0K)=0 and
also oy, og)(N* = 0,rg¢), % T = 0K) = 0 at N* = 0, at which the MIT occurs,

New Optical [Electrical] Coefficients
The relaxation time to(g; is related to ooz by!™:

My p) (X)X mg

TO[E] (N*, rqa), X T) = O0[E] (N*, Iqaa)y X T) X Therefore, the mOblIlty Ho[E] is

a?X(N*/ge(v))
given by:
. axto[E](N* Ta@*T) _ o[E)(N"ra@xT) ~ cm?
N ) » Ry T) = * = oo 1 22a
Horen(N*, ra@), % T) m}, ) (COX M ax(N*/ge(v)) () (222)

o0E](N*rdca)%T)

being expressed in terms of N

. Further, as noted in above Eq. (20a) for

oorE] (N, Ta@y, % T), Hoey (N*, Faca), . T) can thus be expressed in terms of:

JE(ra@x)
EZncep) (N Tagay, % T) X Gy (N7, Taay, %, T) X —s—.

(N*)*

Then, from the well-known idea of Stokes, Einstein, Sutherland and Reynolds, we can define

our viscosity coefficient, Vg (N*, rqa), x, T), and its reduced one, RVqg (N*, r4(a), X, T),

by:

Voe)(N".ra@)xT) _ 1 (V s ) . _
q — 6mxX o) (N rqa)x T)xRws(N*x) \em * cm?  RVorg)(N%ra@), % T) =
Vorei (N rdca)xT) (22b)

Vore] (N* 1 g(a)X, T=0K)’

38c(v) (69)]

1/3
N ) is the effective Wigner-Seitz radius, decreasing with

where Rys(N*, x) = (

increasing N.

Further, as noted above for uo[E]](N*,rd(a),x, T), Voig)(N*, rqca), %, T) can thus be expressed

in terms of

19 1
(N")12 (N*)2

EIZTn(Fp) (N*,rd(a) ,X,T) XGo (N*,rd(a),X,T) X ’ s(rd(a),x) Gy (N*,rd(a),x,T) X s(rd(a),x)

low T and high N, giving raise to some concluding remarks as follows.

at

being proportional to:
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(1) With increasing rqc,) and for given x, T and N, since as observed in Ref. [3], E(Fd(a))
decreases, thus Vg (rd(a)) increases, as observed in next Tables 4n and 4p in Appendix 1.
(2) With decreasing T and for given x, N and rqc,), since G,(T) decreases as noted in Table
2, thus Vg (rd(a)) increases, as observed in next Tables 4n and 4p in Appendix 1.

(3) With increasing N and for given x, T and rq(,), as noted above: Vo (N) is proportional

1
to: (N*)s, thus Vg (N) increases, as observed in next Tables 4n and 4p in Appendix 1.

Now, it is interesting to define the activation energy, AEqg (N*, rqca, % T), st by:
AEO[E](N*, rqa) X T) = kBT X Ln (RVO[E](N*,I‘d(a),X, T)) <0 eV, (22C)

according to the reduced activation energy, RAEqg)(N*, rqca), %, T), given by:

RAE oy (N*, Fagay %, T) = AEo[E](Il\(I;;d(a),X,T) —In (RWo[E] (N*, o % T)) <0

Furthermore, the Hall factor is defined by:

(to[e])FDDF _ Ga(y) y = T _ kg T and
[(TO[E])FDDF]2 G217 7 Enpy(N“ra@XT)  Epnp)(N“ra@)xT)’

rao[ue](N*, Ta@), %, T) =
therefore, the Hall mobility yields:

2
trome)(N* T, % T) = Hopr(N* Ta@y % T) X ruopue;(N* ragay, %, T) (% ), (23)
noting that, at T=0K, since rugmoj(N* rq@,xT) =1 , one therefore gets:

Wnome](N* Ta@), % T) = poE(N*, Tae), %, T).

Our new relation between the diffusion, mobility, and viscosity
By taking into account Equations (22a, 22b), our relation is found to be defined by!!):

Dog)(N"ra@*T) _

Vorg)(N".rga)xT)
X = X
wore](N*rqa)x.T)

Rego(N*, ra), % T) = Do) (N*, Taay, %, T) X

N* _ dEpngrp) _ kpxT ( dEn(p)(u)) 3xL ( dEn(p)(U))
X * =—X = X\U——| = x 1T X
61 X Ryys(N*, x) . N . u—_ =2 TX|u i ;

kg _ [3xL

= /ﬂz , (24)

Where Dgjoj(N*, rqca), % T) is the diffusion coefficient, &, (u) is defined in Eg. (11), the
mobility pope(N*, rac), %, T) is determined in Eg. (22a), and the viscosity coefficient

Vorg)(N%, rqay, %, T) is defined in Eq. (22b). Then, by differentiating this function &, ) (u) =

Ernp) (W) _ GW+AuPF(u) _ V()
kgT  1+AuB  — w@)’

with respect to u, being defined in Eq. (11), one thus obtains
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CEn(p) (w)

o Therefore, Eq. (24) can also be rewritten as:
kgXT V(W) xW(w)-V(w)xW'(u)

Rejoj(W) = = —Xu ) where W'(u) = ABuB~! and V'(u) =u' +

3 _4 _8
2727 (1 — du) + 2AuBF(w) |(1 + 28) + 2x 2 2t2en 24 One remarks that: (i) asu — 0,

1+bu 3+cu 3

KpxT | -
qu , being

a well-known relation given by Stokes, Einstein, Sutherland and Reynolds, and (ii) as u — oo,

one has: W? = 1 and u[V' x W —V x W'] = 1, and therefore: Rgo;(u— 0) =

one has: W2 ~ A%u?B and u[V’' x W — V x W’] = Zau?/3A%u?B, and therefore, in this highly
degenerate case and at T=0K, our relation (24) is reduced to: Rgjo;(N*, rqca), %, T = 0K) ~

%Epno(ppo)(N*)/Q- In other words, Eq. (24) verifies all the correct limiting conditions.
Furthermore, in the present degenerate case (u > 1), Eq. (24) can be rewritten as:

2 EFno(Fpo)(u) 4 (bu_%+zcu_§>
Rejojvey (N, Fagay, % T = OK) = X =200 |1 4 5. (1rouire )|
u cu

where a = [3v7/4]", b =1 (5)" and e = 25252 ()",

Then, in Tables 3n and 3p, reported in Appendix 1, for given (rq,x and T), the numerical
results of Vog}, Mo and Dogy, expressed as functions of N, are obtained by using
Equations (22b, 22a and 24).

In Tables 4n and 4p, reported in Appendix 1, the numerical results of the viscosity coefficient

Vorg)(N¥, r4ca), %, T) are obtained by using Eq. (22b).

In Tables 5n and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy
Enoe](N" Ta@, %, T) , mobility  pog (N, rg@),x T) ,  diffusion  coefficient
Dog)(N*, rgca), % T) , Viscosity coefficient VO[E](N*,rd(a),x, T), and activation energy

AEO[E](N*, Td@a) % T) are obtained by using Equations (11, 22a, 24, 22h, 22c), respectively.

Finally, in Tables 6n and 6p, For given x, r,, T and N, the numerical results of reduced
Fermi energy &,o(5)(N", ra@), % T), mobility popg (N, rq@), % T) , diffusion coefficient
Dog)(N*, rgca), % T) , Viscosity coefficient WO[E](N*,rd(a),x,T), and activation energy

AEO[E](N*, Td@a), % T) are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
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CONCLUDING REMARKS

In the n*(p*) — X(x)-crystalline alloy, 0 < x < 1, x being the concentration, the diffusion-
mobility-activation energy-Fermi energy relations, enhanced by : (i) the optico-electrical
phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric
constant law, (rq(a), X), Tq(a) being the donor (acceptor) d(a)-radius, given in Equations (1a,
1b), (iii) our accurate reduced Fermi energy, .., given in Eqg. (11), accurate with a
precision of the order of 2.11 x 10~* [9], and finally (iv) our optical-and-electrical
conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical

model and Fermi-Dirac distribution function, as those given in our recent works.*™
Some important concluding remarks can be given and discussed as follows.

(I)- Then, in Tables 3n and 3p, reported in Appendix 1, for given X, rq¢,), and T=(4.2 K and

77 K [300K]), the numerical results of Vg, Kofg) and Do), expressed respectively in

(4] . . . .
(ﬂ x S 107 "xem? 103><cm2)1 as functions of N, are obtained by using Equations (22b, 22a

cm cm?’ Vxs s

and 24). In particular, for given (X, rqc,) and N), those of o (T) decrease [decrease] with
decreasing T, due to the increasing reduced Fermi energy &,q(g;. Further, for given (X, rqc)
and N) the numerical results of Vg increase with decreasing T, in good agreement with
those, obtained in liquids by Ewell and Eyring™*”! and complex fluids by Wenhao™®, and for
given (x, T and rqc)) they increase with increasing N, in good agreement with those,
obtained in complex fluids by Wenhao.*®! In other words, with increasing degeneracy (or

with decreasing T and increasing N), both the reduced Fermi energy &,og) and the viscosity
coefficient Vg increase, according to an equivalence between the degeneracy-and-

viscosity concept.

In Tables 4n and 4p, the numerical results of the viscosity coefficient Vg (N*, rgca), x, T),
expressed in (:—I: X c%) are obtained by using Eq. (22b), suggesting that: (i) for given (x, T
and N), they increase with increasing rqc), (ii) for given (X, rqc,) and N) the numerical
results of V) increase with decreasing T, in good agreement with those, obtained in liquids
by Ewell and Eyring"'" and complex fluids by Wenhao™, and (iii) for given (x, T and rq))

they increase with increasing N, in good agreement with those, obtained in complex fluids by

Wenhao.™ In other words, with increasing degeneracy (or with decreasing T and increasing
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N), both the reduced Fermi energy &, o[ and the viscosity coefficient Vq ) increase,
according to an equivalence between the degeneracy-and-viscosity concept. In Tables 5n
and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy

Enoe](N", Ta@, % T) . mobility o (N7, Trgay %o T) , diffusion  coefficient
Dogj(N*, rq@), % T) , viscosity coefficient Vo (N*,rd(a),x, T), and activation energy
AEqg) (N*, Itgay % T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
In particular, from the numerical results of Vg, one notes that, for given (X, rqc,) and N),
they increase with decreasing T, in good agreement with those, obtained in liquids by Ewell

and Eyring™" and complex fluids by Wenhao.™® In other words, with increasing degeneracy,

both the reduced Fermi energy &,o(g) and the viscosity coefficient Vg increase, according

to an equivalence between the degeneracy-and-viscosity concept.

Finally, in Tables 6n and 6p, For given X, r,, T and N, the numerical results of reduced
Fermi energy &,0(g)(N*, ra@), % T), mobility poe(N*, rq@), % T) , diffusion coefficient
Dog](N*, racay, x, T) , viscosity coefficient Vg (N*, racay, % T), and activation energy
AEO[E](N*,rd(a),x, T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
In particular, from the numerical results of Vg (N*, rqca), x, T), One observes that, for given
(X, rqca) and T), they increase with increasing N, in good agreement with those, obtained in
complex fluids by Wenhao.*® In other words, with increasing degeneracy, both the reduced
Fermi energy &,pyore; and the viscosity coefficient Vq (g increase, according to an

equivalence between the degeneracy-and-viscosity concept.
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APPENDIX 1
Table 1: In the X(x) = GaAs,_,Te,-crystalline alloy, the different values of energy-band-

structure parameters, for a given x, are given in the following.”!

In the X(X)-crystalline alloy, in which ryo(a0)=Tas(Ga)=0.118 nm (0.126 nm), we have [3]:
Eew)(®) =1Xx+1xX (1 —x)=1, mey(x)/m, =0.209 (0.4) X x+ 0.066 (0.291) X (1 —x) ,
go(x) =123 Xx+ 13.13 X (1 — x), Ego(x) = 1.796 X x + 1.52 X (1 — x).

Table 2: Expressions for G4 (y = EL)’ due to the Fermi-Dirac distribution function, are used to determine
n(p)

the electrical-and-thermoelectric coefficients, suggesting that, with increasing T (or decreasing T) and for given

(N, rg,x), since &, ) (T) decreases (or increases), the function Gy (T) increases (or decreases).

Gs/2 6%) G2 (y) Gs/2 6] Gs(y) G2 4] G4 (y) Go/2 )

(te5+30) (1+5) (+5-50) o) (50450 (e f) (1450450

Table 3n: For given x, rg4, and T=(4.2 K and 77 K), the numerical results of Vo g), Ho[g) and Do(g), expressed

. . (ev 3x cm? 103xcm? . . . .
respectively in (Ce—m X ﬁ, 10 Vxxcsm , 10 >;cm ), as functions of N, are obtained by using Equations (22b, 22a and

24). In particular, for given (x, rq and N), those of g[g)(T) decrease with decreasing T, due to the increasing
reduced Fermi energy §,0(g) (or with increasing degeneracy), and therefore, those of the viscosity coefficient
Voig) increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring"” and
complex fluids by Wenhao.!"® Further, for given (x, T and rg), those of Voig) increase with increasing N, due
to the increasing reduced Fermi energy §,o(g) (or with increasing degeneracy), in good agreement with those,
obtained in complex fluids by Wenhao.!"® In other words, with increasing degeneracy (or with decreasing T and
increasing N), both §,0[g) and Vg[g) increase, according to an equivalence between the degeneracy-and-

viscosity concept.

Donor As Sb
rq (nm) 7 0.118 0.136

For x=0 and at T=4.2 K

N (10%° cm™3)

3 15.65 [22.64], 16.97 [11.73], 7.401 [4.171]  18.52[27.17], 14.11 [9.778], 6.153 [3.475]
7 21.83 [31.70], 16.15 [11.12], 12.39[6.952]  26.30 [38.15], 13.40 [9.238], 10.28 [5.777]
10 25.07 [36.46], 15.83 [10.88], 15.41 [8.635]  30.23 [43.91], 13.13 [9.038], 12.78 [7.170]

For x=0 and at T=77 K
N (10%% cm™3)
3 4.150 [1.475], 64.01 [180.2], 27.91 [64.02] 4.990 [1.770], 53.24 [150.1], 23.21 [53.34]
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7
10

11.52 [5.626], 30.60 [62.64], 23.47 [39.17]
16.11 [9.397], 24.64 [42.24], 23.98 [33.51]

13.88 [6.769], 25.39 [52.06], 19.48 [32.55]
19.42 [11.32], 20.44 [35.07], 19.89 [27.82]

For x=0.5 and at T=4.2 K

N (10%° cm™3)
3

7

10

48.53 [86.32], 5.467 [3.074], 1.300 [0.523]
68.87 [124.2], 5.114 [2.835], 2.144 [0.850]
79.58 [144.2], 4.986 [2.751], 2.652 [1.047]

57.90 [102.4], 4.580 [2.590], 1.088 [0.440]
82.52 [148.1], 4.267 [2.377], 1.788 [0.712]
95.47 [172.3], 4.155 [2.302], 2.209 [0.875]

For x=0.5 and at T=77 K

N (10*° cm™3)
3

7

10

12.81 [5.588], 20.71 [47.48], 4.925 [8.072]
36.30 [22.00], 9.704 [16.01], 4.067 [4.800]
51.10 [37.12], 7.765 [10.69], 4.130 [4.066]

15.26 [6.615], 17.38 [40.09], 4.128 [6.808]
43.47[26.21], 8.101 [13.43], 3.394 [4.025]
61.29 [44.33], 6.473 [8.950], 3.441 [3.403]

For x=1 and at T=4.2 K

N (10*° cm™3)
3

7

10

90.54 [180.2], 2.918 [1.466], 0.493 [0.163]
130.9 [267.1], 2.685 [1.316], 0.803 [0.259]
152.2 [313.3], 2.604 [1.265], 0.990 [0.316]

107.1 [211.0], 2.462 [1.250], 0.414 [0.138]
155.9[315.5], 2.253 [1.113], 0.673 [0.218]
181.6 [371.1], 2.180 [1.067], 0.828 [0.266]

For x=1 and at T=77 K

N (10%° cm™3)
3

7

10

23.58 [11.46], 11.20 [23.06], 1.892 [2.554]
68.74 [46.99], 5.114 [7.482], 1.530 [1.470]
97.53 [80.28], 4.063 [4.936], 1.544 [1.232]

27.71[13.30], 9.513 [19.81], 1.599 [2.186]
81.73 [55.34], 4.298 [6.348], 1.283 [1.245]
116.3 [94.93], 3.405 [4.171], 1.292 [1.040]

Table 3p: For given X, ry, and T=(4.2 K and 300 K), the numerical results of Vg, Kog) and Do), expressed

. . Y 10* 2 103xcm? . . . .
respectively in (:—m Cm%, Vxxcsm ,1 zcm ), as functions of N, are obtained by using Equations (22b, 22a and

24). In particular, for given (X, r, and N), those of po[g(T) decrease with decreasing T, due to the increasing
reduced Fermi energy §,0g) (or with increasing degeneracy), and therefore, those of the viscosity coefficient
Vog) increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring!'” and
complex fluids by Wenhao.!"® Further, for given (x, T and r,), those of Vo[ increase with increasing N, due
to the increasing reduced Fermi energy &, (or with increasing degeneracy), in good agreement with those,
obtained in complex fluids by Wenhao.!"® In other words, with increasing degeneracy (or with decreasing T and
increasing N), both §,o[g) and Vg increase, according to an equivalence between the degeneracy-and-
viscosity concept.

Acceptor Mg In

r, (nm) 2 0.140 0.144

For x=0 and at T=4.2 K

N (10%° cm™3)

3
5

16.99 [291.6], 1.540 [0.090], 6.513 [0.070]
20.95 [378.7], 1.490 [0.082], 8.972 [0.092]

18.05 [306.2], 1.447 [0.083], 6.100 [0.066]
22.28 [398.8], 1.400 [0.078], 8.410 [0.087]
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10 27.61 [529.4], 1.431 [0.075], 13.80 [0.133]

29.39 [559.2], 1.343 [0.071], 12.95 [0.126]

For x=0 and at T=300 K
N (10*° cm™3)

3 16.83 [229.5], 1.554 [0.114], 6.562 [0.090]
5 20.85 [331.8], 1.497 [0.094], 9.005 [0.101]
10 27.55[502.1], 1.434 [0.079], 13.82 [0.139]

17.88 [240.8], 1.461 [0.108], 6.146 [0.086]
22.17 [349.3], 1.406 [0.089], 8.441 [0.096]
29.34 [530.3], 1.346 [0.074], 12.96 [0.131]

For x=0.5 and at T=4.2 K

N (10*° cm™3)

3 51.62 [384.7], 0.500 [0.067], 1.126 [0.043]
5 64.86 [509.6], 0.477 [0.061], 1.548 [0.056]
10 87.02 [726.8], 0.452 [0.054], 2.368 [0.081]

54.57[401.9], 0.471 [0.064], 1.055 [0.041]
68.75 [534.7], 0.450 [0.058], 1.452 [0.053]
92.45 [765.7], 0.425 [0.051], 2.223 [0.076]

For x=0.5 and at T=300 K

N (10%° cm™3)

3 49.93 [290.0], 0.517 [0.089], 1.156 [0.070]
5 63.82 [423.4], 0.485 [0.073], 1.568 [0.065]
10 86.48 [674.1], 0.455 [0.058], 2.379 [0.085]

52.76 [302.9], 0.488 [0.085], 1.083 [0.067]
67.64 [443.7], 0.457 [0.070], 1.470 [0.062]
91.87 [709.9], 0.428 [0.055], 2.233 [0.081]

For x=1 and at T=4.2 K

N (10%° cm™3)

3 93.53 [477.2], 0.270 [0.053], 0.417 [0.028]
5 120.4 [648.9], 0.254 [0.047], 0.575 [0.037]
10 164.9 [947.6], 0.237 [0.041], 0.879 [0.052]

98.24 [495.2], 0.255 [0.051], 0.389 [0.026]
127.1 [677.8], 0.240 [0.045], 0.539 [0.035]
174.8 [995.3], 0.223 [0.039], 0.825 [0.050]

For x=1 and at T=300 K

N (10*° cm™3)

3 87.18 [364.0], 0.290 [0.069], 0.439 [0.052]
5 116.5 [509.8], 0.262 [0.060], 0.590 [0.047]
10 162.9 [855.3], 0.240 [0.046], 0.887 [0.057]

91.41 [378.3], 0.274 [0.066], 0.411 [0.049]
122.9 [531.4], 0.248 [0.057], 0.553 [0.045]
172.6 [897.8], 0.226 [0.043], 0.833 [0.054]

WWwW.wjert.org

1SO 9001: 2015 Certified Journal

217




Cong. World Journal of Engineering Research and Technology

Table 4n: The numerical results of the viscosity coefficient Vo5 (N*, rg,%, T), expressed in (% X Cmiz), are

obtained by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with increasing rq, (ii) for
given (X, rq and N) the numerical results of Vg increase with decreasing T, in good agreement with those,

[18]

obtained in liquids by Ewell and Eyring!” and complex fluids by Wenhao!'®!, and (iii) for given (x, T and ryq)

they increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao.!"® In

other words, as discussed in above Table 3n, with increasing degeneracy (or with decreasing T and increasing

N), both the reduced Fermi energy &,og and the viscosity coefficient V(g increase, according to an

equivalence between the degeneracy-and-viscosity concept.

Donor

As

Sb

Sn

rq (nm) [4] 7

0.110

0.118

0.136

0.140

For x=0 and at T=4.2 K

N (10*° cm™3)

3 7 15.08 [21.82] 15.65 [22.64] 18.82 [27.17] 20.44 [29.48]
7 7 21.02 [30.55] 21.83 [31.70] 26.30 [38.15] 28.59 [41.44]
10 2 24.14 [35.13] 25.07 [36.46] 30.23[43.91] 32.87[47.72]

For x=0 and at T=77 K

N (10*° cm™3)

3 2 4.000 [1.422] 4.150 [1.475] 4.990 [1.770] 5.4191.920]
7 7 11.09 [5.421] 11.52 [5.626] 13.88 [6.769] 15.08 [7.353]
10 2 15.51 [9.053] 16.11 [9.397] 19.42 [11.32] 21.12[12.30]

For x=0.5 and at T=4.2 K

N (10*° cm™3)

3 2 46.83 [83.40] 48.53 [86.32] 57.90 [102.4] 62.64 [110.4]
7 2 66.42[119.9] 68.87 [124.2] 82.52[148.1] 89.45 [160.2]
0 7 76.72 [139.1] 79.58 [144.2] 95.47[172.3] 103.6 [186.6]

For x=0.5 and at T=77 K

N (10%° cm™3)

3 2 12.36 [5.401] 12.81 [5.588] 15.26 [6.615] 16.49 [7.128]
7 2 35.00 [21.23] 36.30 [22.00] 43.47[26.21] 47.11 [28.34]
0 2 49.26 [35.81] 51.10 [37.12] 61.29 [44.33] 66.48 [47.98]

For x=1and at T=4.2 K

N (10%° cm™3)

3 2 87.52 [174.6] 90.54 [180.2] 107.1[211.0] 1153 [226.1]
7 2 126.4 [258.3] 130.9 [267.1] 155.9 [315.5] 168.5 [339.7]
10 2 146.9 [302.7] 152.2[313.3] 181.6 [371.1] 196.5 [400.1]
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For x=1and at T=77 K

N (10*° cm™3)

3 » 22.81[11.11] 23.58 [11.46] 27.71[13.30] 29.75 [14.20]
7 » 66.38 [45.45] 68.74 [46.99] 81.73[55.34] 88.25 [59.48]
10 » 94.13 [77.61] 97.53 [80.28] 116.3 [94.93] 125.8 [102.2]

Table 4p: The numerical results of the viscosity coefficient Vo (N*, 15, %, T), expressed in (% X ﬁ), are

obtained by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with increasing r,, (ii) for

given (X, T, and N) the numerical results of Vg increase with decreasing T, in good agreement with those,

[18]

obtained in liquids by Ewell and Eyring!” and complex fluids by Wenhao!", and (iii) for given (x, T and r,)

they increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao.!"® In

other words, as discussed in above Table 3p, with increasing degeneracy (or with decreasing T and increasing

N), both the reduced Fermi energy &,o(g) and the viscosity coefficient Vq(g) increase, according to an

equivalence between the degeneracy-and-viscosity concept.

Acceptor

Ga

Mg

In

Cd

r, (nm) 7

0.126

0.140

0.144

0.148

For x=0 and at T=4.2 K

N (10*° cm™3)

3 15.41[269.2] 16.99 [291.6] 18.05 [306.2] 19.38 [324.2]
5 18.96 [348.1] 20.95 [378.7] 22.28 [398.8] 23.96 [423.7]
10 2 24.95 [484.4] 27.61[529.4] 29.39[559.2] 31.66 [596.4]

For x=0 and at T=300 K

N (10*° cm™3)

3 2 1527 [212.2] 16.83 [229.5] 17.88 [240.8] 19.19 [254.5]
5 7 18.87 [305.2] 20.85 [331.8] 22.17[349.3] 23.85[370.9]
10 7 24.90 [459.5] 27.56 [502.1] 29.34[530.3] 31.60 [565.5]

For x=0.5 and at T=4.2 K

N (10%° cm™3)

3 2 47.16 [357.7] 51.62 [384.7] 54.57 [401.9] 58.24 [422.8]
5 2 59.01 [471.0] 64.86 [509.6] 68.75 [534.7] 73.63 [565.6]
10 2 78.91 [667.6] 87.02 [726.8] 92.45 [765.7] 99.30 [814.0]

For x=0.5 and at T=300 K

N (10%° cm™3)

3 7 45.62[269.9] 49.93 [290.0] 52.76 [302.9] 56.26 [318.5]
5 2 58.07[391.9] 63.82 [423.4] 67.64 [443.7] 72.43 [468.6]
10 7 78.42 [619.4] 86.48 [674.1] 91.87[709.9] 98.68 [754.4]
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For x=1and at T=4.2 K

N (10*° cm™3)

3 2
5 2
10 2

86.20 [448.1]
110.2 [603.7]
150.1 [874.4]

93.53 [477.2]
120.4 [648.9]
164.9 [947.6]

98.24 [495.2]
127.1 [677.8]
174.8 [995.3]

103.9 [516.4]
135.4[712.8]
187.1 [1054.2]

For x=1 and at T=300 K

N (10*° cm™3)

3 2
5 2
10 2

80.53 [341.0]
106.7 [475.7]
148.3 [789.9]

87.18 [364.0]
116.5 [509.8]
162.9 [855.3]

91.41[378.3]
122.9 [531.4]
172.6 [897.8]

96.49 [395.3]
130.8 [557.2]
184.8 [950.1]

Table 5n: For given x, rq, T=[3K, 80K, 300K] and N= [N1=3 X 108 cm3,N2 = 7.73 X 10 cm3,N3 =

1.320767 X 10'° cm™3], the numerical results of

reduced Fermi energy &g (N%,rq,x, T), mobility

Horg)(N*,rq,x, T) , diffusion coefficient Dgg(N*,rq,x,T) , viscosity coefficient Vqg(N¥,rg,%,T), and

activation energy AEqg(N", rg, %, T), are obtained by using Equations (11, 22a, 24, 22b, 22c¢), respectively. In

particular, from the numerical results of Vg (N*, 1g,%, T), one observes that, for given (x, rq and N), they

increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring!” and

complex fluids by Wenhao.!"® In other words, as discussed in above Table 3n, with increasing degeneracy, both

the reduced Fermi energy &,o(g; and the viscosity coefficient Vg increase, according to an equivalence

between the degeneracy-and-viscosity concept.

Donor

As

Sb

Sn

For x=0 and N=N1

b

€no[E)(T=3K) N
€no[E)(T=80K) N
€no[E)(T=300K) N

10%x cm?

Ho[E](3K) (—sz

105x cm

Ho[E](80K) (

Vxs

)

_2)\

10°% cm?
Ho[E](300K) (T) N

10%xcm?

Do[gjax) ( 5

10%xcm

Do[e(sok) (

s

Do[Ej300Kk) (

S

)N

_2)\

107xcm2)

Voo (e X ) 7

cm  cm?

eV s
cm

Vorg] sox) (— X E) 7

S

Vole] (300K) (:—m

Vv
Xm)’

-6
_AEO[E](SK) (meVX 10 ) 7

543.631 [443.128]
20.447 [16.692]
5.6668 [4.6732]

0.2018 [0.1423]

14.374 [52.110]

2935.8 [1123.2]

0.1891 [0.1087]

13.427 [39.615]

2.6659 [8.8411]
6.1026 [8.6467]
0.0857 [0.0236]

0.00042 [0.00011]

77.228 [246.66]

543.052 [442.657)
20.425 [16.674]
5.6612 [4.6684]

0.1694 [0.1200]

12.093 [44.008]

2470.3 [9486.4]

0.1586 [0.0915]

11.284 [33.420]

2.2410 [7.4641]
7.2643 [10.255]
0.1018 [0.0280]

0.00050 [0.00013]

77.392 [247.18]

542.728 [442.393]
20.413 [16.665]
5.6581 [4.6657]

0.1567[0.1112]

11.199 [40.832]

2288.0 [8801.9]

0.1466 [0.0848]

10.444 [30.989]

2.0745 [6.9241]
7.8506 [11.062]
0.1099 [0.0301]

0.00054 [0.00014]

77.485 [247.48]
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—AEqg)gok) (meV) 7

_AEO[E](300K) (meV) /7

29.409 [40.696]

247.800 [291.517]

29.424 [40.711]
247.859 [291.574]

29.432 [40.719]
247.891 [291.605]

For x=0.5 and N=N2, one has:

EnofE)(T=3K) N
EnO[E](T=80K) N

EnO[E](T=300K) N
(105>< cmz)
HO[EIBK) \ " yxs
105 2
X cm ) N
VXxs

MO[E](BOK)(
105x cm?
HO[E](soOK)( Vxs )
10%xcm?
=) s

Do[g)3K) (

10%xcm?
)~
s

Do[e)(sox) (

104xcm2)
s

Do[e)(z00k) (
eV S
Vore) @0 (5 X o) 7

eV s
Vore) o) (5 % z)

S

Vole] 300k (ﬂ X —) 7

cm  cm?
-6
_AEO[E](3K) (meVx 10 ) 7
—AEq[g)gok) (meV) 7

_AEO[E](300K) (meV) 7

554.093 [396.356]

20.838 [14.947]
5.768 [4.1690]

0.0624 [0.0362]

1.3255 [3.8510]

261.01 [818.33]

0.0596 [0.0247]

1.2622 [2.6155]

241.34 [636.35]
26.919 [46.445]
1.2683 [0.4365]

0.0064 [0.0020]

23.699 [74.182]

21.063 [32.176]

215.554 [259.201]

551.782 [394.703]
20.752 [14.885]
5.746 [4.1501]

0.0528 [0.0308]

1.1295 [3.3107]

222.62 [702.99]

0.0502 [0.0210]

1.0710 [2.2390]

205.02 [546.90]

31.778 [54.366]

1.4853 [0.5067]

0.0075 [0.0024]

23.898 [74.805]
21.118 [32.234]
215.785 [259.398]

550.489 [393.778]
20.703 [14.851]
5.733 [4.1396]

0.0490 [0.0287]
1.0531 [3.0997]
207.66 [657.91]
0.0465 [0.0195]
0.9962 [2.0913]
190.82 [511.95]
34.198 [58.273]

1.5912 [0.5406]

0.0081 [0.0025]

24.010 [75.157]
21.150 [32.267]
215.915 [259.509]

For x=1 and N=N3, one has:

€no[E)(T=3K) N
€nolE)(T=80K) N

€no[E)(T=300K) N
105x cm?
Ho[EIGK) \ ™ yxs
105 2
X cm ) N
VXxs

Ho[E](80K) (

105x cmz)
VXxs

HO[E](300K) (

104xcm?
DO[E](SK)( 5 ) N
104xcm2) \
S

Dogjsok) (

DO[E](SOOK) (1042“2)
Vorg ) (:_:1 X c%) 7
Volg] ok (% X ﬁ)
Vorg] 300x) (ev X i) 7

cm  cm?

—AEq(g)s) (meVX 1076) 2

558.980 [367.148]
21.02086 [13.85866]

5.8155[3.8218]

0.0321 [0.0166]

0.3603 [0.9030]

67.728 [185.85]

0.0310 [0.0105]

0.3461 [0.5675]

63.157 [146.17]
62.036 [119.91]
5.5369 [2.2092]

0.0294 [0.0107]

12.948 [40.106]

553.559 [363.587]
20.81815 [13.72604]
5.7630 [3.7773]

0.0273 [0.0143]

0.3119 [0.7926]

58.801 [162.51]

0.0261 [0.0090]

0.2967 [0.4933]

54.320 [127.98]
72.605 [138.60]

6.3654 [2.5045]

0.0338 [0.0122]

13.203 [40.895]

550.520 [361.591]
20.70452 [13.65170]
5.7336 [3.7521]

0.0254 [0.0134]

0.2932 [0.7504]

55.384 [153.48]

0.0241 [0.0083]

0.2774 [0.4643]

50.895 [120.95]
77.782 [147.62]
6.7507 [2.6384]

0.0357 [0.0129]

13.349 [41.348]
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16.658 [27.5359]
197.8375 [240.972]

16.781 [27.6695]
198.3763 [241.374]

16.851 [27.7451]
198.6807 [241.598]

—AEqg)gok) (meV) 7

_AEO[E](300K) (meV) /7

Table 5p: For given x, r,, T=[3K, 80K, 150K] and N= [N1=1.707349 x 10'° cm 3, N2 = 4.14873 X
10 cm~3,N3 = 6.854349 x 10 cm™3] , the numerical results of  reduced Fermi energy
Epoe](N", 15, %, T), mobility pog)(N*, 1y, %, T), diffusion coefficient Dog(N*, 1y, %, T) , viscosity coefficient
Voig)(N*, 15, %, T), and activation energy AEqg(N”, 1,, %, T), are obtained by using Equations (11, 22a, 24, 22b,
22c), respectively. In particular, from the numerical results of Vg (N*, 1y, %, T), one observes that, for given (x,
r, and N), they increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and
[17]

Eyring!"” and complex fluids by Wenhao."® In other words, as discussed in above Table 3p, with increasing

degeneracy, both the reduced Fermi energy &,0(g) and the viscosity coefficient V(g increase, according to an

equivalence between the degeneracy-and-viscosity concept.

Acceptor Ga

Mg

In

For x=0 and N=N1, one has:

EpolEI(T=3K) N 1659.6 [306.822] 1645.2 [304.156] 1634.9 [302.254]
EpolE)(T=80K) N 62.255 [11.615] 61.714 [11.516] 61.329 [11.445]
EpolE)(T=150K) N 33.229 [6.3444] 32.941 [6.2928] 32.736 [6.2560]

3 2
107X cm ) 17.691 [1.0796]

Ho[E](3K) ( Vs

103x cm?
Hol[E](80K) (T) N 17.717 [1.1269]
103x sz) N

Vxs

Ho[E](150K) ( 17.737 [1.2483]

102xcm?
) N

DO[E](3K) ( S 50.602 [0.5709]

10%xcm?
) N
s

DolEj(soxy ( 50.661 [0.5901]

102xcm?
Dolgjas0x) ( ) N 50.809 [0.6391]

Vo eV S) 7 12.163[199.32]

Elo[E] 3K) (c_m cm2

Vo Vo S) 2 12.145[190.95]

Elo[E] (80K) (cm cm?

ev S
VolElos aso, (e X o) 7 12:100[172.38]

16.029 [0.9989]

16.053 [1.0434]

16.114 [1.1577]

45.449 [0.5236]

45.503 [0.5415]

45.638 [0.5874]
13.366 [214.49]
13.346 [205.32]

13.295 [185.06]

15.080 [0.9525]

15.103 [0.9956]

15.161 [1.1059]

42.490 [0.4962]

42.541[0.5134]

42.669 [0.5575]
14.163 [224.21]
14.141 [214.52]

14.087 [193.12]

cm " cm?
_AEO[E]O[E] P (meVx 10_6) 7 0.540[15.81] 0.550[16.09] 0.557 [16.29]
_AEO[E]O[E] (80K (meV) 2 0.01024 [0.296] 0.01042 [0.301] 0.01055 [0.305]
-AE (meV) 7 0.06745 [1.8775] 0.06864 [1.9080] 0.06950 [1.9301]

O[E]o[E] (150K)

For x=0.5 and N=N2, one has:

Epole)(T=3K) N 1659.6 [472.458] 1648.9 [469.399] 1641.2 [467.218]
Epole)(T=80K) N 62.255 [17.787] 61.852[17.673] 61.565[17.591]
EpoleI(T=150K) N 33.229 [9.5829] 33.015 [9.5226] 32.862 [9.4797]

103x cm?
) \

HO[E](3K) ( Vs 5.3455[0.6816]

4.8530 [0.6292]

4.5716 [0.5990]

WWwW.wjert.org

1SO 9001: 2015 Certified Journal

222




Cong. World Journal of Engineering Research and Technology

3 2
1o xom ) N 5.3534[0.6942]

Vxs

Ho[E](80K) (

3 2
= XCm) N 5.3735[0.7262]

Vxs

Ho[E](150K) (

2 2
1o7xem ) \ 15.290 [0.5550]

S

Dogj3k) (

102><cm2)

DojgjsoK) ( 15307 [0.5630]

10%2xcm?
) s
S

DO[E](lSOK) ( 15.352 [0.5826]

Vo Ux2) 2 54430 426.84]

Elo[E] 3K) (5 m?

eV s
VolEloms o (o X o) 7 54349 [419.14]

cm  cm?

Vo[ eV S) 7 54.146 [400.66]

Elo[E] (150K) (R cm?

—AE (mevx 107%)  » 0.540 [6.6679]

O[E] (3K)

~AEoig10 ) oo MEY) 7 0.01024[0.1258]

—AEqg, (meV) 7 0.06745 [0.8185]

O[E] (150K)

4.8603 [0.6409]

4.8788 [0.6708]

13.791 [0.5090]

13.807 [0.5164]

13.848 [0.5346]
59.759 [460.93]
59.669 [452.50]

59.444 [432.31]

0.547 [6.7550]
0.01038 [0.1274]

0.06833 [0.8290]

4.5785[0.6103]

4.5960 [0.6391]

12.931 [0.4824]

12.946 [0.4894]

12.985 [0.5068]
63.290 [482.99]
63.194 [474.07]

62.954 [452.73]

0.552 [6.8182]
0.01047 [0.1286]
0.06897 [0.8366]

For x=1 and N=N3, one has:

EpolEI(T=3K) N 1659.6 [569.554]
€ po[E)(T=80K) N 62.255 [21.416]
EpolE)(T=150K) N 33.229[11.501]

103x cmz)

Ho[E](3K) (T 2.7026 [0.4991]

103x cm?
) N
Vxs

Ho[E](80K) ( 2.7066 [0.4852]

103x cm?
7) N
Vxs

Ho[E](150K) ( 2.7167 [0.5006]

102 xcm?
)N
s

Doejry ( 7.7302 [0.4703]

10%xcm?
)~

DolEj(soxy ( 7.7392 [0.4749]

10%2xcm?
Dogjasoxy (—) N 7.7619 [0.4864]

s

Vo Tx2) 2 12718(717.43)

Elo[E] 3K) (c_m om?

ev S
Volkloge) @ox) (on X o) 7 12700 [708.48]

cm  cm?

ev S
VolElos asox, (oe X o) 7 126.52[686.68]

cm  cm?

~AEo (5] 5 5 MeVX 107%) 7 0.540 [4.5882]
~AEoE145 goxy MEV) 7 0.01024 [0.0867]
—AEqg meV) 7 0.06745 [0.5665]

O[E] (150K)

1648.4 [565.721]
61.836 [21.273]
33.006 [11.425]

2.4579 [0.4424]
2.4616 [0.4480]
2.4710 [0.4624]
6.9831[0.4313]
6.9913 [0.4356]
7.0121 [0.4463]
139.37 [774.40]

139.16 [764.60]

138.64 [740.77]
0.5477 [4.6506]
0.01038 [0.0879]

0.06837 [0.5741]

1640.5 [562.987]
61.537 [21.171]
32.847[11.371]

2.3181[0.4213]
2.3216 [0.4267]
2.3305 [0.4406]
6.5539 [0.4087]
6.5617[0.4129]
6.5814 [0.4231]
147.42 [811.21]
147.20 [800.85]

146.64 [775.65]

0.553 [4.6958]
0.01048 [0.0887]

0.06903 [0.5796]
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Table 6n: For given x, rg, T=(50K, 100K, 150K) and N=[N1=102cm™3, N2=5X 10 cm™3,
N3= 102 cm™3] , the numerical results of  reduced Fermi energy &opg)(N*,rg,%T) , mobility
Hore](N*, 1q,x, T) , diffusion coefficient Do (N*,rg, %, T) , viscosity coefficient Vo (N*,rg,%,T), and
activation energy AEq[g(N*, rq, X, T), are obtained by using Equations (11, 22a, 24, 22b, 22c¢), respectively. In
particular, from the numerical results of Vg (N*,rq,%, T), one observes that, for given (x, rq and T), they
increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao.'"* In other

words, as discussed in above Table 3n, with increasing degeneracy, both the reduced Fermi energy §,0(g; and

the viscosity coefficient Vg increase, according to an equivalence between the degeneracy-and-viscosity

concept.

Donor As

Sb

Sn

For x=0 and T=50 K

Enomnn 72.953 [59.473] 72.930 [59.454] 72.917 [59.443]

Enom ) \ 213.42 [173.97] 213.41 [173.96] 213.40 [173.95]

SN 338.81 [276.18] 338.80 [276.17] 338.79 [276.16]
5 2

Mo(EjovD) (NVXXCS‘“) N 0.5821 [1.5448] 0.4861 [1.2935] 0.4485 [1.1951]
2

Mo(E|N2) (1 v"xcsm) \ 0.2066 [0.2609] 0.1715 [0.2170] 0.1579 [0.1999]
2

Mo[E|(N3) (1 Vxxcsm) N 0.1744 [0.1649] 0.1446 [0.1370] 0.1330 [0.1260]
2

Dogjn1) (1 ZC“‘) 1.2193 [2.6372] 1.0178 [2.2075] 0.9389 [2.0392]
2

Do(gjn2) (1 ZC“‘) \ 1.2663 [1.3038] 1.0516 [1.0845] 0.9677 [0.9987]
10%*xcm?

Dog] (Ng)( ) N 1.6969 [1.3086] 1.4072 [1.0865] 1.2940 [0.9998]

Vo vy (%xi) ” 3.1635 [1.1921] 3.7881 [1.4235] 4.1053 [1.5406]

Vo vy (%xi) » 15.250 [12.073] 18.362 [14.513] 19.953 [15.759]

~—
N

eV
Vore ava) (52 X = 22.764 [24.062]
4.9911[10.753]
0.978876 [3.5870]

0.41536 [1.791078]

_AEO[E](Nl) (meV) 7
—AEO[E](NZ) (meV) 7

_AEO[E](N3) (meV) 7

27.449 [28.978]

4.99297 [10.755]

0.978987 [3.58729]
0.41539[1.791171]

29.849 [31.492]

4.9940 [10.757]
0.97905 [3.58747]

0.415403 [1.79122]

For x=0.5 and T=100 K, one has:

Enotevn 19.850 [14.243] 19.787 [14.197] 19.752[14.172]
EnolEIN2) N 58.295 [41.714] 58.258 [41.688] 58.237 [41.673]
EnolEINg) N 92.599 [66.247 92.570 [66.226] 92.554 [66.215]
Mo[E](N1) (wi]xxcsmz) 2.1597 [6.3743] 1.8334 [5.4554] 1.7060 [5.0959]
Ho[E](N2) (105:sz2) N 0.2604 [0.6339] 0.2178 [0.5331] 0.2012 [0.4935]

5 2
107X cm ) 0.1281 [0.2528]

HO[E](N3) ( Vxs

0.1068 [0.3116]

0.0985 [0.1955]
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2.4773 [5.1503]

10%xcm?
Dogjon )

0.8714 [1.5169]

0.6814 [0.9615]

(=
DO[E ™2 (104><cm )
(=

10%xcm?
Do[gjns) )

eV s
Vot oo (5 X o) 7

Vors ) (5 X o) 7

eV S
Vorei o (g X o) 7

_AEO[E](Nl) (meV) 7

0.8493 [0.2877]
12.088 [4.9659]

30.965 [15.697]
30.7787 [44.864]
13.8079 [26.5139]
8.1336[19.11318]

_AEO[E] (N2) (meV) 7

_AEO[E](N3) (meV) 7

2.0708 [4.3936]

0.7285 [1.2748]

0.5679 [0.8048]
0.9988 [0.3357]
14.446 [5.9032]

37.135 [18.744]
30.8329 [44.920]
13.8167 [26.5243]

8.1369 [19.1180]

1.9234 [4.0965]

0.6725 [1.1799]

0.5235 [0.7434]
1.0725 [0.3590]
15.639 [6.3746]

40.274 [20.286]
30.863 [44.951]
13.821 [26.5302]
8.1388 [19.1208]

For x=1 and T=150 K, one has:

EnoE(N1) N 9.34371 [6.25769]

EnolEI(N2) N 27.7377 [18.2575]

EnolEI(N3) N 44.1402 [29.0163]
105x cm?

HO[E](Nl)( Vs ) N 6.2703 [17.853]
105x cm?

Ho[E] (Nz)( e ) N 0.5846 [1.4679]
105x cm?

Boeing) (T N 02319 [0.5393]

Dorgjeny 4.8970 [9.0036]

(=)~
Dogva) (1 Xsz) N
(=)

1.3929 [2.2920]

4 2
Doeions) () ™ 0.8810 [1.3445]
Voo (Sx=5) 7 0.2887 [0.1014]
\%
Vo v (S x =) 7 53702 [2.1389]

\%
Vore ava) (S x =) 7 17.086 [7.3476]

—AEq gy (MeV) 7 67.6706 [89.56922]
39.4168 [60.41759]

28.2677 [48.50869]

_AEO[E](NZ) (meV) 7

—AEO[E] (N3) (meV) 7

9.22601 [6.18169]
27.6690 [18.2125]
44.0858 [28.9805]

5.4948 [15.868]

0.4938 [1.2514]

0.1946 [0.4560]

4.2338 [7.8968]

1.1737 [1.9492]

0.7384 [1.1356]

0.3273 [0.1133]

6.3498 [2.5057]

20.348 [8.6834]
68.0170 [89.9289]

39.4782 [60.4817]
28.2960 [48.53997]

9.15997 [6.13903]
27.6307 [18.1873]
44.0554 [28.9606]

5.2022 [15.124]

0.4583 [1.1667]

0.1800 [0.4234]

3.9777 [7.4704]

1.0878 [1.8146]

0.6826 [1.0536]

0.3444 [0.1185]

6.8366 [2.6859]

21.990 [9.3495]
68.21369 [90.1331]
39.5126 [60.5177]
28.3119 [48.5575]
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Table 6p: For given x, r,, T=(50K, 100K, 150K) and N=[N1=3 X 10! cm™3

, N2=5 X 10'° cm

-3
9

N3=10%° cm ™3], the numerical results of reduced Fermi energy &,o(g)(N*, Iy, X, T), mobility pog)(N*, 15, %, T),

diffusion coefficient Dqgj(N*,15,%,T) , viscosity coefficient Vqg(N*,1y,%, T), and activation energy

AEq[g)(N*, 1y, %, T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively. In particular, from the

numerical results of Vg (N, 1y, X, T), one observes that, for given (x, r, and T), they increase with increasing

N, in good agreement with those, obtained in complex fluids by Wenhao.!"®! In other words, as discussed in

above Table 3p, with increasing degeneracy, both the reduced Fermi energy &,0[g) and the viscosity coefficient

Voig) increase, according to an equivalence between the degeneracy-and-viscosity concept.

Acceptor Ga

Mg

In

For x=0 and T=50 K
Epoi(N1) N 147.98 [27.401]

EpoEI(N2) N 210.20 [38.891]

EpolEI(N3) Y 336.26 [62.184]
103x cm?

Ho[E] (Nl)( Ve ) N 17.023 [0.9817]

3 2
107x cm ) 16.489 [0.9016]

Ho[E](N2) ( Vs
103x cm?
HO[E](N3) ( Vs ) N

15.850 [0.8174]

Dogjin (1 Xscmz) 72.350 [0.7701]
Dogjonz) (— Xscmz) \ 99.551 [1.0055]
Dogjn3) (102><cm2) N 153.09 [1.4592]
Vo (o X =) 7 15.409 [267.19]
Vo av (o X =) 7 18.960 [346.76]
Vore ava) (S x =) 7 24.948 [483.74]

—AEogam (€VXx 107%) 2 1.1329 [33.08]
~AEqaz (€Vx 107%) 2 0.5614 [16.41]

~AE s (€Vx 107%) 2 0.2194 [6.416]

147.27 [27.270]
209.60 [38.781]
335.79 [62.098]

15.402 [0.9042]

14.904 [0.8276]

14.314 [0.7475]

65.145 [0.7059]

89.731 [0.9204]

138.06 [1.3324]

16.990 [289.39]

20.946 [377.23]

27.606 [528.64]
1.1438 [33.40]
0.5646 [16.50]
0.2200 [6.434]

146.76 [27.176]
209.18 [38.703]
335.45 [62.036]

14.475 [0.8597]
13.999 [0.7851]
13.436 [0.7073]
61.017 [0.6689]
84.112[0.8713]
129.47 [1.2597]
18.046 [303.84]

22.278 [397.25]

29.394 [558.35]
1.1517 [33.63]
0.5669 [16.57]
0.2204 [6.447]

For x=0.5 and T=100 K, one has:

EpofEI(N1) ¥ 39.593 [11.374]

EpolEI(N2) N 56.748 [16.226]

EpormI(N3) N 91.376 [26.057]
103x cm?

Moernn) (i ) N 5.5213[0.7582]
103x cm?

Ho[E] (Nz)( o ) 5.2727 [0.6740]
103x cm?

Ho[E] (N3)( Vs ) N 4.9980 [0.5954]
102xcm?2

Dorgjony ( ) 12.539 [0.4855]

39.231[11.272]
56.446 [16.140]
91.138 [25.989]

5.0196 [0.7024]

4.7840 [0.6214]

4.5262 [0.5462]

11.295 [0.4456]

38.973 [11.199]
56.231[16.079]
90.969 [25.941]

4.7329 [0.6704]

4.5046[0.5911]

4.2566 [0.5180]

10.580 [0.4224]
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DO[E N2 (10 xcm )
e

02xcm
Do[gjns) )

eV s
Voteiovn) (o X ) 7

Vore (n2) (ﬂ X i) 7

cm?

eV s
Vorel vs) (cm X o

-6
_AEO[E](Nl) (CVX 10 ) 7

7

—

—6
_AEO[E](NZ) (CVX 10 ) 7

—6
_AEO[E](N3) (CVX 10 ) 7

17.176 [0.6223]

26.229 [0.8879]
46.974 [342.08]
58.901 [460.78]

78.859 [662.01]
31.668 [386.2]

15.410[189.1]
5.9425[73.173]

15.501 [0.5706]

23.691 [0.8125]
51.432[367.56]
64.745 [498.48]

86.965 [720.62]
32.254[393.3]

15.575 [191.1]
5.9736 [73.554]

14.541 [0.5407]

22.239[0.7691]

54.367 [383.82]
68.629 [522.96]

92.387 [759.14]

32.683 [398.5]
15.695 [192.6]
5.9958 [73.828]

For x=1 and T=150 K, one has:

EpomNy N
EpomI(N2) N
EpO[E](N3) N
103x cm?
Ho[El(ND) (s ) N
103x cm?
HO[E](Nz)( Vs ) N
103x cm?
HO[E](NS)( Vs ) N
102xcm?
DO[E](Nl)( . )
102xcm?
DO[E](NZ)( . ) N
102xcm?
DO[E](Ns)( . )\
eV s
Vore v (5 X o) 7

S

eV
Vormi oo (o X o) 7

— ~— ~—
N

eV s
Vot o (g X s

-6
_AEO[E](Nl) (eVx 10 ) 2

-6
_AEO[E](NZ) (CVX 10 ) 7

-6
_AEO[E](N3) (CVX 10 ) 7

18.280 [6.4545]
26.573 [9.2424]
43.221 [14.907]

3.0050 [0.6538]

2.8114 [0.5448]

2.6196 [0.4602]

4.6981[0.3411]

6.4151 [0.4206]

9.7437 [0.5844]
84.728 [38944]
109.30 [563.97]

149.68 [851.96]

223.32[1814.6]

105.53 [880.49]
39.857[336.27]

17.979 [6.3539]
26.323 [9.1580]
43.025 [14.840]

2.7480 [0.6115]

2.5612[0.5051]

2.3790 [0.4238]

4.224410.3136]

5.7888 [0.3861]

8.8087 [0.5358]
91.880 [412.92]
119.41 [605.46]

164.44 [923.08]

230.89 [1871.9]
107.55 [896.97]
40.221[339.31]

17.763 [6.2820]
26.145 [9.0977]
42.886 [14.793]

2.6016 [0.5875]
2.4182[0.4824]
2.2415 [0.4029]
3.9506 [0.2976]
5.4284[0.3661]
8.2725 [0.5077]
96.462 [427.13]

126.04 [631.85]

174.25 [969.41]

236.54 [1914.4]
109.02 [909.01]
40.482 [341.51]
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