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ABSTRACT

In  degenerate n*(p*) — p(n) — X(x) = GaSb(1 —x)P(x) -
crystalline alloy, 0 < x < 1, various optical and electrical laws and
Stokes-Einstein-Sutherland-Reynolds-Van Cong relations, enhanced
by: the optico-electrical phenomenon (O-EP) and the electro-optical
phenomenon (E-OP), our static dielectric constant law given in
Equations (1a, 1b), our accurate Fermi energy expression given in Eq.
(11), and finally our conductivity model given in Eg. (18), are now
investigated, by basing on the same physical model and the
mathematical treatment method, as those used in our recent works [1-
5]. One notes that, for x=0 (1), this crystalline alloy is reduced to the
n(p)-type degenerate GaSb (GaP) -crystals. For the physical
conditions, as those given in Eqg. (15), one remarks that the optical
conductivity, o, obtained from the O-EP, has a same form with that of
the electrical conductivity, given from the E-OP, og, as those
determined in Eq. (20a), but og > of since my(x) < m¢q,)(X), M)
and m,, being the unperturbed reduced effective electron (hole) mass in

conduction (valence) bands and the relative carrier mass, respectively.
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Then, by basing on our optical [electrical] conductivity models, oqg), given in Eqg. (18), the
diffusion-mobility-viscosity-activation energy-Fermi energy relations are determined, and
their numerical results are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an
equivalence between the degeneracy-and-viscosity concept in this X(x)-degenerate (viscous)

crystalline alloy.

KEYWORDS: Conductivity, Mobility, Viscosity coefficient, Diffusion coefficient,
Activation energy, Fermi energy.

INTRODUCTION

In the n* (p*) — X(x) = GaSb;_,P,-crystalline alloy, 0 < x < 1, x being the concentration,
various optical and electrical laws and Stokes-Einstein-Sutherland-Reynolds-Van Cong
relations, enhanced by : (i) the optico-electrical phenomenon (O-EP) and the electro-optical
phenomenon (E-OP), (ii) our static dielectric constant law, £(rgc), X), r'qca) being the donor
(acceptor) d(a)-radius, given in Equations (1a, 1b), (iii) our accurate reduced Fermi energy,
En(p). given in Eq. (11), accurate with a precision of the order of 2.11 X 10741 affecting all
the expressions of optical and electrical coefficients, and (iv) our optical-and-electrical
conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical
model and Fermi-Dirac distribution function, as those given in our recent works.!*®! It should
be noted here that for x=0 (1), the present obtained numerical results are reduced to those

given in the n(p)-type degenerate GaSb (GaP)-crystals.!" ©*¢

Then, some important remarks can be reported as follows.

(1) As observed in Equations (3, 5, 6a, 6b), the critical impurity density N¢pncpp), defined
by the generalized Mott criterium in the metal-insulator transition (MIT), is just the density
of electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

NEbncpp): Deing obtained with a precision of the order of 2.92 x 1077, as given in our

recent work.r®! Therefore, the effective electron (hole)-density can be defined as: N* = N —
Nepneop) = N — N&hcppy: N being the total impurity density, as that observed in the
compensated crystals.

(2) The ratio of the inverse effective screening length kg, sy to Fermi wave number Kep(ip)

at 0 K, Rgn(spy(N™), defined in Eq. (7), is valid at any N*.
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(3) For given [N, rqc), %, T], the coefficients: oo g (E), ko[g) (E), € o) (E), and qg; (E),
are determined in Equations (18, 19b-19d), as functions of the photon energy E, and then
their numerical results are reported in Tables 3-8, being new ones.

(4) Finally, for particular physical conditions, as those given in Eq. (15), one observes that
the optical conductivity og has a same form with that of the electrical conductivity, og, as
those given in Eq. (20a), but g > o since m.(x) < m¢w)(x), mew) and m,, being the
unperturbed reduced effective electron (hole) mass in conduction (valence) bands and the
relative carrier mass, respectively. Then, by basing on those oqgj-expressions, the diffusion-
mobility-viscosity-activation energy-Fermi energy relations are determined, and their
numerical results are reported in Tables 3n(p), 4n(p), 5n(p) and 6n(p), suggesting an
equivalence between the degeneracy-and-viscosity concept in this X(x)-degenerate (viscous)

crystalline alloy.

In the following, various Sections are presented in order to investigate the conductivity, the
mobility, the viscosity coefficient, and the activation energy, expressed as functions of the

Fermi energy, given in the degenerate (viscous) n*(p*) — X(x)- crystalline alloy.

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the degenerate n* (p*™) — X(x)- crystalline alloy, at T=0 K [1-5], we denote :
the donor (acceptor) d(a)-radius by rq(,), the corresponding intrinsic one bY: Tge(ao)=Tsb(Ga):
respectively, the effective averaged numbers of equivalent conduction (valence)-bands by:
gc(v) » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by m¢)(x)/m,, m, being the free electron mass, the relative carrier mass by: m.(x) =

B @)xmy() m, ) (x) for given x , the unperturbed static dielectric constant by: €, (x), and

me () +my ()

the intrinsic band gap by: E,, (), as those given in Table 1, reported in Appendix 1.

*

Here, the effective carrier mass my,,

(x) is equal to m(y)(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

Edo(ao)(x):13eoo><[[sm(cg])2(x)/mo] meV , and then, the isothermal bulk modulus, by
_ Edo(ao)(x)

B ) =mm s

do(ao) (%)X(rdo(ao)f
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Our Static Dielectric Constant Law [mj, ) (%) = mq (x)]
Here, the changes in all the energy-band-structure parameters, expressed in terms of the
effective dielectric constant e(rq(,), X), are developed as follows.

At gy = I'doao), the needed boundary conditions are found to be, for the impurity-atom

volumes: V = (4m/3) x (rd(a))3 and Vgo(ao) = (41/3) X (rdo(ao))3 , according to the
pressures : p, p, = 0, and to the deformation potential energies (or the strain energies) : «a,

a, = 0. Further, the two important equations, used to determine the a -variation, A @ = a

d_p:_Bdo(ao)(X) da P . . id_a Bdo(ao)(x) Then

—a, = a, are defined by : v v and p=—7, » giving rise to: dV(dv)

by an integration, one gets:

)= Edo(ao)(X) X [(&)3 — 1] X

Tdo(ao)

[Aa(rd(a):X)] Bdo(ao)(x) X(V Vdo(ao) )x In (

n(p)
In (M)?) >0
Tdo(ao) -

Furthermore, we also showed that, as rqg) > I'qo(ao) (Td(a) < I'doao)). the compression

Vd()

(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gp)(rd(a),x), and
the effective donor (acceptor)-ionization energy Eqa) (rd(a),x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rd(a), X)]n(p)’

2
So(x)
Egngp)(Td@a), X) — Ego(X) = Eqa)(Taa) X) — Edoao)(X) = Edoan)(X) X [ s(rd(a))) - 1] =

+ [Aa(rd(a),x)]n( )

for I'q(a) > I'do(ao): and for I'q(a) < I'do(ao):

2
o(X)
Egnep)(Td@a), X) — Ego(X) = Eqa)(Taa) X) — Edoao)(X) = Edoao)(X) X [(S;d;) - 1] =

- [Aa(rd(a), X)] n(p) .

Therefore, one obtains the expressions for relative dielectric constant e(rq(,), x) and energy

band gap Egn(gp)(Taca) x), as:

€0 (X)

3 3
Td(a) ( T'd(a) )
1 —1(x1
+[(rdo(ao)) ]X n T'do(ao)

<¢&4(x), being a new

(i)-for rqa) = rao@o), Since s(rd(a),x):\/

S(I'd(a), X)‘IaW,
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r a 3
Egn(gp) (rd(a):X) - Ego(X) = Ed(a) (rd(a)’x) - Edo(ao) (X) = Edo(ao) (X) X [(L) - 1] X

T'do(ao)

In ()" > o, (1)

Tdo(ao)
according to the increase in both Egpgp)(Taca), x) and Eqcay (racay, x), With increasing rqca)

and for a given x, and

(ii)-for Tagay < Tdoqaoy » SINCE €(raay %) = £0() > g,(x), with a
1- (—rd(a) )3—1 xln(—rd(a) )3
T'do(ao) T'do(ao)
s : . rd(a) d@ i -
condition, given by: [(rdo(ao) 1] X ln do(ao)) <1, being a new &(rgca), X)-law,
3
gn(gp)(rd(a)J X) Ego(x) = Eq() (rd(a): X) Edo(ao)(x) = _Edo(ao)(x) [ rd:gi) - 1] X
Td(a) <
In (rdo(ao)) - 0' (1b)

corresponding to the decrease in both Egpgp)(Tacay, X) and Eqcay(raca), x), With decreasing

rq) and for a given x.

It should be noted that, in the following, all the optical and electrical properties strongly
depend on this new £(rg(,), X)-law.

Furthermore, the effective Bohr radius agpgp) (raca), X) is defined by:

X)Xh? ,
2Ca@X P _ 53 x 1078 em x ~md@) )

a TaayX) = —— ~—— : ’
Bn(ep) (Ta@) X) = ) xmoxa? ) 00

where g=e, according to an electron charge equal to : -e

Generalized Mott Criterium in the MIT [m},,)(X) = mcq)(X)]
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, N¢pnnpp) (Faca), X), was given by the Mott’s criterium, with an empirical parameter,

M, py, ast! :

n(p)

1
Nepnepp) (Tacay X) /3 apn(Bp) (Tda) X) = Mnp), Mpep) = 0.25, 3)

Depending thus on our new &(ryca), X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rgp(spy,m, in the Mott’s criterium, being characteristic of interactions, by :
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1
3 3 1
r'sn(sp),M(N = NCDn(CDp) (rd(a)» X), I'd(a), X) = ( ) X =

41tNcpn(cpp) (Td(a)X) aBn(Bp) (rd(a)'x)

2.4813963, ()

for any (rqca), x)-values. Then, from Eq. (4), one also has :

1
1

1 3)\3
Nepn(cop) (Tagay %) /3 X apn(ep) (Taca, X) = (E) X zastsses ~ 025 = Mgy, )
Explaining thus the existence of the Mott’s criterium

Furthermore, by using M) = 0.25, according to the empirical Heisenberg parameter
H,p) = 0.47137, as those given in our previous work?®, we have also showed that
Ncpn(cpp) 18 just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail ,  N¢prcppy . With a precision of the order of
2.92 x 1077 ,respectively.’! So,

Nepnvop) (Fagay ¥)= Nepacep) Faga)» X)- (6a)

It shoud be noted that the values of My, and H, ., could be chosen so that those of

Nepnceppy @nd NEp 1 cpp) are found to be in good agreement with their experimental results.

Therefore, the effective density of electrons (holes) given in parabolic conduction (valence)

bands, N*, can be defined, as that given in compensated materials:

N*(N, rg(a), X) =N = Nepnnpp) (Fagay, X) = N = NEpncepp) (Fagay ) = 0. (6b)

One notes here that, with increasing rq(, and for given x and N, N¢pnnpp) (Tacay) increases,

as observed in Ref.”®!, and therefore, N*(rqca)) decreases.

In summary, as observed in our previous paper, for a given x and an increasing Td(a)s

e(ra(a), X) decreases, while Egnocgpoy(Tacay )+ Nepnvop) (Tdca), X) and NEEE(CDp)(rd(a),x)
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the degenerate n* (p*) — X(x) -crystalline alloy, the reduced effective Wigner-Seitz (WS)

radius rgn(sp), Characteristic of interactions, being given in Eq. (4), in which N is replaced by

N*, is now defined by:
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3gc(v))1/3 % 1

* — kl;ﬁ(Fp) * —
¥ X Tsn(spy (N Tagay, X) = =2 <1, Tenep) (N Taga) X) = (MN* P,

aBn(Bp)

1

2Nn*\ 3
3TN )3 is the Fermi

being proportional to N*~"/3. Here, y = (4/9m)3, Kenqrpy(N*) = (gcm

wave.

Then, the ratio of the inverse effective screening length kg, (sp) to Fermi wave number

Kenkp) Is defined by:

 — Ksnisp) _ Kenep) -
Rsn(Sp)(N ) = k:: (SFI;) = k-ri( p) = Rsnws(spws) + [RsnTF(spTF) - RanS(spWS)]e fsnGsp) < 1,
sn(sp
)

Being valid at any N*.
Here, these ratios, Rsntr(sprr) and Rgaws(spws), can be determined as follows.
First, for N> Nepnnpp)(fa@),X) . according to the Thomas-Fermi  (TF)-

approximation, the ratio Rgprr(sprry(N*) is reduced to

_ ksnTF(spTF) kl;rll(Fp) 4YTsn(sp)
RsnTF(spTF)(N*) =K = L = « 1, (8)
Fn(Fp) SnTF(spTF) ”

being proportional to N*~%/¢,

Secondly, for N < Nepnnpp) (Tagay), according to the Wigner-Seitz (WS)-approximation,

the ratio Rs,ws(snws) is respectively reduced to

+\ — Ksn(sp)ws d[rZ; spy<EcE(N)]
Ron(spyws(N*) = =HBWS = 0.5 x (2 — y2mep e 1), (%)

Where Ecg(N*) is the majority-carrier correlation energy (CE), being determined by:

0.87553 , (2[1-In(2)] _
E (N*) —0.87553 n 0.0908+rsn(sp)T( 2 )Xln(rsn(sp)) 0.093288
E = :
¢ 0.0908+Tsn(sp) 1+0.03847728xr /3718876

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

N*
kgt U kgt 2T[X(gc(v))
Fn(Fp) nw _—_1 Fn(Fp) _ * _
< = — =R <1 , U N*rqa),x) = +——
apnBp)  EFno(Fpo)  An(p) ksr}(sp) sn(sp) n(p)( d(a) ) e(rga)X)
21,—1/2
q ksn(sp)’ (9b)
. . EFno(Fpo)(N") X _ R2XKEn ppy (NY)
which gives: A N* rqa),X) = ————-— E N* rgea) X) = ———2—,
g n(p) ( d(a) ) Un(p)(N*'rd(a)'x) Fno(Fpo) ( d(a) ) 2xmy, ) (x)xmg
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Here, one remarks that: (i) the generalized Thomas-Fermi energy [Un(p)(N*,rd(a),x) can thus
VN*

be approximately expressed as: C X ,
e(Td(a)X)

C being a constant, and (ii) Uy (Trac))

increases with increasing rqc,) and for given x and N, since e(rq(c,)) decreases, as given in

Ref.l’l

BAND GAP NARROWING (BGN)
First, the BGN is found to be given by:

AEgn(gp)(N*' Td(a), x) =

£0(x)
S(rd(a)rx)

£0(x)
S(Fd(a)rx)

5 1 3
= 1 = 1 - 1
golx 4 m " go(x 2 5 golx 2 =
[ o) ] X | xN;+2a4x[ o) xN§+2a5><[ o®_I* % NE, N, =
e(racayx) my e(rdca)x) e(rdcayx)
N
9.999x1017cm—3’

a; +

1 1
X N3 +a, X X N2 X (2.503 X [~Ecg(Tsn(sp) )] X Tsnespy) + @z X

(10a)

Here, for AEg,n(N* rq,X), One has: a; = 3.8 x1073(eV), a, = 6.5x 107*(eV), a3 =
28x1073(eV) , a,=5597%x10"3(V) , and as=81x10"%EV) , and for
AEg,N(N*,1ry,x), One has: a; = 3.15 x 1073(eV), a, = 5.41 x 107*(eV) , az = 2.32 X
1073(eV), a, = 4.12 x 1073(eV), and a5 = 9.8 x 10~5(eV).

Therefore, at T=0 K and N* = 0, and for any x and rq(,), one gets: AEg, ) = 0, according
to the metal-insulator transition (MIT).

Secondly, one has:

AEgn(gp)(T; X) = 1074T? x [7.205><X + 5.405x(1—x)] (eV). (lOb)

T+94 T+204

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
degenerate p* — X(x)-crystalline alloy, in order to obtain the same one, as given in the

degenerate n* — X(x) - crystalline alloy, according to the reduced Fermi energy

Epn(Fo)(N* Tq(a) % T . . )
Efngrp) + &npy(N" Tag), % T) = — (Fp)(kB;d(a)X )~ 0(< 0), obtained respectively in the

degenerate (non-degenerate) case.
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For any (N*, rqc), %, T), the reduced Fermi energy &,,)(N*, rqc), X, T) or the Fermi energy
Epnerp)(N*, Tq@), X, T), obtained in our previous paper™™, obtained with a precision of the

order of 2.11 x 1074, is found to be given by:

Epn(p W _ G+AUPFW _ V(u)
Enpy (W) = — A = way A= 0.0005372 and B = 4.82842262, (1)

where u is the reduced electron density, u(N*, rqay, x, T) = NN—(TX) New) (T, X) = 28w X
c(v)(L

3 -2
(mn(p)(’z‘lxh‘;“’_XkBT)z (cm™3), F(u) = aus (1 +bus + Cu_g) Y a= [3\/E/4]2/3’ b= %(2)2
o= and Gu) = Ln(u) + 277 xux e~ d=2%/2[ L~ 2] >0,

So, in the non-degenerate case (u < 1), one has: Epyppy(u) = kgT X G(u) = kgT X Ln(u)

as u — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

2
75 XKy (N")
zxm;(p)(x)xmo

8

2 4
one gets: Epp(ppy(u » 1) = kgT X F(u) = kgT X aus (1 +bu 3 + cu_E)

Fn(Fp)

as u — oo, the limiting degenerate condition. In other words, &, = is accurate,

and it also verifies the correct limiting conditions.

In particular, as T— 0K, since u! >0, Eq. (11) is reduced to: Efnopoy(N*) =

hzxkfzn(Fp)(N*)
me;(p) (X)xmg

, proportional to (N*)#3, noting that, for a given N*, Epno(rpo) (m;(p)(x) =

mr(x)) > Efno(Fpo) (m;(p) (x) = mg) (x)) since m,(x) < mc,)(x) for given x. Further, at
T=0 K and N* = 0, being the physical conditions, given for the metal-insulator transition
(MIT).

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of En(p)(N*, Td(a) X T).[g]

Fermi-Dirac Distribution Function (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by: f(E) = (1 +e¥)™!, y=(E—
Egneep))/(kgT).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™® is found to be given by:

— p _ [ of ﬁf 1 eY
(E”)eopr = Gp(Brncep) X Efnqeyy = [ P X (= 55) B, =30 = o x i
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Further, one notes that, at 0 K, —— = 8(E = Egno(rpo))» 8(E — Egno(epoy) being the Dirac
delta (8)-function. Therefore, Gp(EFno(Fpo)) =1.

Then, at low T, by a variable change Y = (E — Epnrp))/(kgT), one has:

© B
p(EFn(Fp)) =1+ EFrll)(Fp) f oo(1+eY)2 (kBTY + EFn(Fp)) dy =1+ Zu 12, Cp X

(kgT)B x E;f(Fp) X Ig, where CB =p(p—-1)..p—B+1)/B! and the integral Ig is
given by:

> yBer (> yB ey .
Ig = f_oo(1+ey)2 - f—oo (ey/2—+e_w2)z dy, vanishing for old values of B. Then, for even

values of = 2n, with n=1, 2, ..., one obtains:

_ o anxey
ln = fo (1+eY)?

Now, using an identity(1 + e¥)™2 = 32 ,(—1)%*'s x Y6~V a variable change: sy = —t,
the Gamma function: f0°° t?Me~tdt =T (2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 22"~ 11?%|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I,, = (22" — 2) x 2" x |B,,|. So, from above Eq. of (EP)gppr, We get in

the degenerate case the following ratio:

(EP) (p-1). 2n+1 —
Gp(Brnrm) = pomot = 14 Th g B i X (227 = 2) X [Bynl X 37" = Gpan ()
Ep n(Fp

(12)
nikg T T

noting that G,—,(y = — = %) =1,

T _ nikg T
Enp)(N*ra@)XT)  Epnp)(N*rq@)xT)’

andas T- 0K, Gps4(y » 0) » 1.

where y =

Then, some usual results of G,-4(y) are given in the Table 2, reported in Appendix 1,
suggesting that, with increasing T (or decreasing T) and for given (N, rg, %), since &, (T)

decreases (or increases), the function G, (T) increases (or decreases).

OPTICAL-AND-ELECTRICAL PROPERTIES

Optico-Electrical Phenomenon (O-EP) and Electro-Optical Phenomenon (E-OP)
In the degenerate n* (p*) — X(x)-crystalline alloy, one has:

(i) in the E-OP, the reduced band gap is defined by:

Egnz(gpz) = Egn(gp) - AEgn(gp)(N*'rd(a)'X) - AEgn(gp) (T, %), (13)
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where the intrinsic band gap Egp(gp) is defined in Equations (1a, 1b), AEgn(gp) (N*, racay, x)
and AEgy,gp) (T, x) are respectively determined in Equations (10a, 10b), and
(if) in the (O-EP), the photon energy is defined by: E = hw, and the optical band gap, as:
Egni(gp1) = Egna(gp2) + Epn(rp)-
Therefore, for E > Egn1(gp1) (Egn2(gp2)). the effective photon energy E* is found to be given
by:

E* = E — Egni1(gp1) (Egn2(gp2)) 2 0. (14)

From above Equations, one notes that: E* = [E — Egn1(gp1)] = Epn(rp), given in the O-EP, if
E = [Egni(gpn) *+ Ern(ep)| = Egnggpro  and myqy () = my(x), and E* = E — Egna(gpy) =
EFn(Fp) y given in the E'OP, |f E= [EgHZ(ng) + EFn(Fp)] = Egn(gp)E and m;(p)(X) =

My (%), noting that Epyep)(my (%)) > Egncep) (M) (%)), since m,(x) < me)(x), for a

given X. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*™) — type degenerate n*(p*) — X(x) -

crystalline alloy, Egpgp), are well defined.

Optical Coefficients
The optical properties for any medium, defined in the O-EP and E-OP, respectively,

according to: [mjy = m(x)[mey(x)]] , can be described by the complex
refraction: Nog) = nopg; — ikopgy » o and  Kopg) being the refraction index and the
extinction coefficient, the complex dielectric function: Eqg) = €1 og] — i€z 0[], Where
i2 =—1, and Eog) = NO[E]Z. Further, if denoting the normal-incidence reflectance and the
optical absorption by Rog; and «q g, and the effective joint parabolic conduction (parabolic
valence)-band density of states by:

]DOSn(p) O[E] (E: N, I'q(a), X T) =

. 3/2
1 2mp ) (%) * E—Egni(gp1) (Egna(gp2))
2z X (h— XV Erno(rpo) (N) X | g7

gni(gp1) (Egnz(gpz))‘l'EFn(Fp) _EFno(Fpo)]

, and

hq®x|v(E)|?

NoJE] (E)XCEXS(rd(a)'X)XEfree space

Fog (E) = , One gets [2]:
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Exe; o[g(E) _ 2Exkogj(E)
hc no[g)(E) - hc -

Xo(g) (E) = JDOS,p) o5 (E) X Fopg)(E) =

41‘[0‘0[]3] (E)

cng g (E)X&(rg(a) X)X Efree space,

_ . _In —1]2+K 2
&1 g (E) = nope2 — ¥og)? + €2 0] (E) = 2KopgnopE » and Ropg (E) = 10— O[E]Z :
[nO[E]+1] +KO[E]

(16a)
One notes here that, at the MIT-conditions : N* = 0, both Egp(gp1)(Egn2(ep2)) =Egn(ap)

according to :

2

E-E (E ) 0

gni(gp1)\“gn2(gp2) _9 —

[E-[E (E )+E -E ]] 0 for E=Egn(gp)
gni(gp1)\tgn2(gp2) Fn(Fp)~ EFno(Fpo)

2
E-E (E ) )
[ gni(gpt) Enz(gp2) ] =1 for E 2 Egygp), S0 that, in such the MIT,
E:_[Egnl(gp1)(Egnz(gp2))‘|'EFn(Fp)_EFno(Fpo)]

3

. 1 2my ) (x)\2 .
]DOSn(p)O[E](E,N yTd@)» X T) =53 X (h(—g)) X \/EFno(Fpo)(N =0)=0, for E=

Egn(gp)» which is largely verified since Nepnnpp) (Facay, X)= Nébacop) (Faca) X) OF
Egnz(gp2) Neonvopy T = 0K) = Egna(gna) (NEDacopy T = 0K) 2 Egn(qpy, as those given in
Equations (6a, 6b). In other words, the critical photon energy can be defined by: E = Egp,(gp).
Then, Eq. (6a) states that N¢pncpp), given in parabolic conduction (parabolic valence)-band
density of states, is just the density of electrons (holes) localized in the exponential

conduction (valence)-band tail, NEp e cpp), With a precision of the order of 2.92 x 10~7 .©

Therefore, for E = Eg(gpy, the exponential conduction (valence)-band tail states can be

approximated with a same precision to:

3

2y ) (%)

]DOSE(BP’I)‘O[E] (E, N*, rd(a), X, T) = # X (T)Z X \/EFHO(FpO) (N* = NCDH(NDp))' (16b)

Here, €¢ee space = 8.854187817 x 1071%( c? ) is the permittivity of the free space, -q (<0)

Nxm?2

is the charge of the electron, |V0[E](E)| is the matrix elements of the velocity operator

between valence (conduction)-and-conduction (valence) bands, and our approximate

expression for the refraction index ngpg is found to be defined by:

. Xi(Egn )XE+Y;(Egn )
nog] (B, N*, T, % T) = Do, (Tga), X) + Dy —— ungl;—Bimci B, (17)
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wT

Going to a constant as E — oo, since n(E — 0, rg(,),X) = Ne (Tga), X) = /€(Ta@), X) X —,

wr,
given in the well-known Lyddane-Sachs-Teller relation, in which wr =~ 5.1 x 103 s~ and

wy, = 8.9755 x 1013 s71 are the transverse (longitudinal) optical phonon frequencies, giving

rise t0: N (rgca), X) = ’s(rd(a),x) %X 0.568.

. 2

Here, the other parameters are determined by: X;i(Egni(gp1)) = % X [—BZ—‘ + Egn1(gp1)Bi —
Ai _ [Bix(E2nicgpny+Ci) J4Ci—Bf

Eénl(gpl) + Ci]‘ Yi(Egnl(gpl)) = al X [ . 12gp1 - 2Egn1(gp1)ci , Qi = >

fori=(1, 2, 3, and 4),

A; = 4.7314 x 107%, 0.2313655,0.1117995,0.0116323 , B; =5.871,6.154,9.679

13.232, and C; = 8.619,9.784, 23.803, 44.119.

Now, the optical [electrical] conductivity ogg) can be defined and expressed in terms of the

, Where,

2 2
kinetic energy of the electron (hole), Ey = ﬁ k being the wave number, as:
n(p) °
1
2xk k Ex )2 . . .
oore) (k) = ?wh X Konton) X [k x aBn(Bp)] X (V?p)) (5=) Which is thus proportional to

2
where & = 7.7480735 x 1075 ohm™! and Un(p)(N*,rd(a),x) is determined in Eq. Eq.
(9b).

TIkBT
EFn(Fp)

2
Then, we obtain: (E?)pppr = Go(y = )xEén(Fp) , and Gy(y) = (1 +y?) =
Go(N*, Tq(a), % T), With y = EL Eatp) = Enp) (N, Tacay, x T) for a presentation simplicity.
n(p)

Therefore, from above equations (16, 17), if denoting the function H(N*, Td(a) X T) by:
H(N*, r4ca), % T) =

[an(Fp) (N

. . Epn (N
ron v % [Kencep) (N X aBnap) (Faca, X)) X JAn(p) (N7) = =i —< | X

Up(p)(N*rgcayx)

G,(N*,rqa), % T), which can be approximately expressed in terms of: EZ ;g0 (N¥) X

G, (N*, Td(a), X T) X —JS(rd@'X)

—, since as noted in Eq. (9b), Uy, (N*, raca), x) is approximately
(N*)2
VN*

expressed as: C X ,
P €(rga)x)

C being a constant. Thus, with increasing rq(,) and for given x, T

and N, the function H(rqc,) therefore decreases since £(rqc,)) decreases, as noted in Ref.”!
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Then, our optical [electrical] conductivity models, defined in the O-EP and E-OP,
respectively, for a simply representation, can thus be assumed to be as:
60(E N*,rg@a),x T) =

E-E

2
gni(gp1)
and
_[Egnl(gpl)+EFn(Fp)—EFn0(Fp0)]] (.Q.Xcm)

2
—— X H(N",rq(a), %, T) X [E

GE(E, N, rqca), X, T) =

E-E

gn2(gp2) ] (Qxcm (18)

[(Egna2(gp2) +Ern(rp)~EFno(Fpo))

—— X H(N*, rqca), % T) X [

It should be noted here that

Q) GO[E](E = Egn1(gp1) [Egnz(gpz)]) =0 , and ogg(E - ) — Constant for given

(N, r4c),x T) —physical conditions, and

(i) as T—> 0Kand N* = 0 [or Egpo(ppo)(N*) = 0], according to: H(N*, Td@a), % T) =0, and

for a given E, [E— Egnigp)] = [E — Egnegpy] =Constant, then from Equations (16-18),
i£] (E)= Constant, oo (E) =0, ko_gp—op|(E) = 0, & o[ (E) = (ns)? = Constant,

g2(E) = 0, and ) (E) = 0.

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains all the analytically results as:

|v(E)|? 8m2h an(Fp)(N )
E 3 f— D) X [Ken(ep) (N*) X apneap) (Ta@), )] | X
(Zmr)Zx Un(p)(N*,rd(a),x sn(sp)
G2(N*, gy % T), (19a)
Ko(E) = 29° X H(N*, rd(a), X, T) X
n(E)Xs(rd(a)'X)xsfree spaceXE
2
E-E
[ gni(gp1) ] and
E~[Egn1(gp1) +EFn(Fp) ~EFno(Fpo)]
(E) 2q2 % H(N* T) X [ E_EgDZ(gPZ) ]2
K = ) r ) X’ ]
E n(E)Xe(rq(a)X)X&free space XE d(@) E_[(Egnz(gp2)+EFn(Fp)_EFno(FpO)]

(19b)
Which gives: kopg)(E = Egn1(gp1) [Egn2(gpzy]) = 0, and g (E = ) — 0, as those given in

Ref.[?]

2

E-E
and

4q? * gni(gp1)
€ E) = X H(N*, rqc), % T) X [
2 0( ) €(rq(a)X)XEfree space XE ( d@ ) E_[Egnl(gpl)+EFn(Fp)_EFno(Fpo)]
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2

gnz(gp2) 19
C
gnz(gpz)+EFn(Fp)_EFno(Fpo)] ’ ( )

E-E

4q? "
g,5(E) = 1 X H(N", rq(a), %, T) X [E—[(E

€(rd(a)X)X€free space XE
Which gives: &,0_gp2e-0p](E = Egni(gp)[Egna(gpz)]) = 0, and €,0_gp(2r—op) (E = @) =

0, as those given in Ref.?,

X (E) =

4° X H(N* T) X [ E—Egni(gp1) 2 ( 1 ) d

r X — an

hen(E)Xe(rqa),X) X Efree space yTd(a) 4 E—[Egn1(gp1) *EFn(Fp)—EFno(Fpo)] cm
xg (E) =

4q? .

X H(N*, rqeq),X%, T) X

hen(E)Xe(rg(a)X) X Efree space ( d(a) )

E-E 2

(1) g
E_[(Egnz(gpz)+EFn(Fp)_EFn0(Fp0)] cm/’

which gives: oqg; (E = Egn1(gp1) [Egnz(gpz)]) =0,and &g (E - o) - Constant.

Furthermore, from Equations (16, 17, 19b), we can also determine & o[g)(E) and Rog; (E).

Now, from Equations (18, 19b, 19c, 19d), using Eq. (15) as E = Egpgp)o[g), One obtains

respectively, as:

2
* q2 * E n
O'O(N Taga)y X T) =—=X H(N yTd(a)y X T) X (ﬂ> (nxlcm),

EFno(Fpo)

having the same form with that of oE(N, Td(a) X T) [1], as:

2 2
og(N*, rgqa), % T) = ﬁ X H(N*, rg(a), %, T) X (M> (Grem)» (20a)

X EFno(F]:no) Qxcm

Noting here that for given (N*,rd(a),x, T) -physical conditions we obtain: oo > o since

m,(x) < Me(y) (%),

2

* 2q *
Ko(N* rgea), % T) = X H(N™, rqca,%x, T) X
0 ( d() ) n(E) X€(rd(a)X)XEfree space X(Egn1(gp1) T EFn(Fp)) ( d(@) )
2
(—EF“(F"’) and
E:Fno(Fpo)
. 2q? «
KE(N Td@)y % T) = X H(N »Td(a) % T) X

n(E)XE(rd(a)'X) X€free space X(Egnz(gp2) T EFn(Fp))

(M)Z, (20b)

E:Fno(Fpo)
4q?
€(rq(a)X)X€free space X(Egn1(gp1) TEFn(Fp))

2
e20(N" Ta@),x T) = X H(N*, rqca), % T) X (—EF“(FP) )

EFno(Fpo)

and
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4q?

€(rq(a)X)X€free space X(Egn2(gp2) tEFn(Fp))

2
€2 E(N*' Td(a), X T) = X H(N*, Iq@) X T) X (—EFH(FP) )

EFno(Fpo)

2

4q
20c X (N*,rq2),% T) =
( ) 0 ( d(a) ) hen(E)Xe(rga)X) X Efree space
2
E 1
(ﬂ) (_) and
Efno(Fpo) cm

Xg (N*, rd(a): X, T) =

X H(N*, rga), %, T) X

4q?

hen(E)Xe(rg a)X) X Efree space

2
x H(N", rq(ay %, T) X (M> (=)- (20d)

EFno(Fpo)

Further, from Equations (16, 17, 20b), we can also determine &; o(gj(E) and Rog) (E).

Now, going back to Eq. (20a), one remarks that, as noted above for the function

H(N*, raa, %, T), the function ooz (N*, rqca), %, T) can thus be approximately expressed in

terms of EZpp)(N",Taca), %, T) X Go(N*, rqqa), X, T) X ~——=— , being proportional to:
(N4

13
G2(N*, gy % T) X [e(rge), x) X (N)1z at low T and high N, giving raise to some

concluding remarks as follows.

(1) With increasing rq(,) and for given x, T and N, since as observed in Ref.”, g(rye))
decreases, thus o (rd(a)) decreases, as observed in Tables 9n and 9p given in Ref.™

(2) With decreasing T and for given x, N and rq(y), since G,(T) decreases as noted in Table
2, thus oo (' T) decreases, as observed in Tables 9n and 9p given in Ref.[!

(3) With increasing N and for given x, T and rq(,), as noted above, o (N) increases, as

observed in Tables 9n and 9p given in Ref.!!!

OPTICAL [ELECTRICAL] PROPERTIES [my, ;) = m(x)[mcy,) (X)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by:

. . w . _m kg)? _
orh. ofg](N", rq@), %, T) in ok and the Lorenz number L by: L_?x(—) =

XK q
2.4429637 (WXK"zhm) = 2.4429637 x 10~8 (V2 x K~2), then the well-known Wiedemann-
Frank law states that the ratio, Gzz—;}[? due to the O-EP [E-OP], is proportional to the
temperature T(K), as:
oth.o[E](N"Td(a)*T) — LxT. 1)

oo[E](N*T4(a)xT)
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Further, the resistivity is found to be given by: pog|(N*, rgca), X, T) = 1/00g (N, rq@), % T),

noting again that N* = N — Nepnvpp) (Taca), X)-

In Eq. (20a), one notes that at T= 0 K, oo[g)(N*, rgca), %, T) is proportional to E%no(Fpo), or to

(N*)g.Thus , from Eq. (21), one has: oo (N =0,r4@),xT=0K)=0 and
also oy, oig)(N* = 0,rga), % T = 0K) = 0 at N* = 0, at which the MIT occurs,

New Optical [Electrical] Coefficients
The relaxation time tog; is related to ooz by!™:

mp p) (X)X mg

TO[E] (N*, rqa), X T) = O0l[E] (N*, Iqaa)y X T) X Therefore, the mOblIlty Ho[E] is

9ZX(N*/ge(v))
given by:
) axtoe)(N* ra@xT) _ ooE(N“ra@xT)  cm?
N , , ,T — " = - ) 228.
Horen(N*, ra@), % T) m}, ) (COX M ax(N*/ge(v)) () (222)

oo[E](N* rq@@)xT)

Being expressed in terms of S

. Further, as noted in above Eq. (20a) for

ooe](N* Tagay % T), Bogey (N*, Tacay, %, T) can thus be expressed in terms of:

5 . . . ’ 8(rd(a)JX)
Efnerp)(N" Taga), % T) X Go(N*, Taqay, %, T) X Tl

*)4
Then, from the well-known idea of Stokes, Einstein, Sutherland and Reynolds, we can define

our viscosity coefficient, Vo (N*, rgca), %, T), and its reduced one, RVyg (N*, rgca), %, T),

by:
Vog(N"rq@xT) _ 1 (V s ) . _
= — X — RV r x,T) =
q 6TIX HO[E]](N*vrd(a)vaT)XRWS (N*,x) \cm cm? ! O[E] (N »hd(a) & )
Vog)(N"/rdca)xT) (22b)

WO[E] (N*,rd(a),X,T=OK)’

3gc(v)(X) 1/3 . . . . . . .
Where Ry s(N*,x) = (——— is the effective Wigner-Seitz radius, decreasing with
WS 4TIN*

increasing N.

Further, as noted above for poe;(N*, raay, % T), Vog)(N*, raca), %, T) can thus be expressed

in terms of
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19 1
(N9)12 (N*)2
Elzi'n(Fp) (N*,I‘d(a),X,T) XGZ (N*,I‘d(a),X,T) X s(rd(a),x) Gz (N*,rd(a),x,T)x s(rd(a),x)

low T and high N, giving raise to some concluding remarks as follows.

at

being proportional to:

(1) With increasing rq(,) and for given x, T and N, since as observed in Ref.”l, g(rqe))
decreases, thus Vg (rac)) increases, as observed in next Tables 4n and 4p in Appendix 1.
(2) With decreasing T and for given x, N and rq(y), since G,(T) decreases as noted in Table
2, thus Vo g (raca) ) increases, as observed in next Tables 4n and 4p in Appendix 1.

(3) With increasing N and for given x, T and rq(), as noted above: Vg (N) is proportional

1
to: (N*)s, thus Vg (N) increases, as observed in next Tables 4n and 4p in Appendix 1.

Now, it is interesting to define the activation energy, AEqgj(N*, rqca), %, T), astt by:

AEO[E](N*, rqea) X T) = kgT X Ln (RVO[E](N*,rd(a),X, T)) <0eV, (22C)

According to the reduced activation energy, RAEq g (N*, rac), %, T), given by:

RAE oy (N*, Fagay %, T) = AEo[E](Il\(I;;d(a),X,T) —In (RWo[E] (N*, oy % T)) <0

Furthermore, the Hall factor is defined by:

(to[e]®)FpDF _ Ga(y) T kg T

= LY = = , and
[¢toreprope]”  [G2()I2 y En)(N"Ta@XT)  Epneep)(N*Taa)%T)

rhome](N", Ta@), x, T) =
therefore, the Hall mobility yields:

2
trome)(N* T, % T) = Hopr(N* Ta@y % T) X ruopue;(N* ragay, %, T) (% ), (23)

Noting that, at T=0K, since rygmoj(N*rq@,xT)=1 , one therefore gets:

HHO[HE] (N7, ISR T) = Ho[E] (N7, Tda) X T).

Our new relation between the diffusion, mobility, and viscosity
By taking into account Equations (22a, 22b), our relation is found to be defined by™:

DO[E] (N*,I‘d(a),X,T) —
kope)(N*raca)x.T)

Vorei (N rd(a)xT) %

Rego(N*, ra) %, T) = Do) (N*, raay, %, T) X

« — N_* dEFn(Fp) — kgxT ( dEn(p)(u)) _ 3LL ( dEn(p)(u))
61 X Rys(N*, x) = . X N S g X u— = |0 X T X u—_—)
kB 3xL
PR (24)
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where Dgjo1(N*, racay, %, T) is the diffusion coefficient, &, (u) is defined in Eq. (11), the
mobility pope(N*, ra@), %, T) is determined in Eq. (22a), and the viscosity coefficient
Vorg)(N%, rqay, %, T) is defined in Eq. (22b). Then, by differentiating this function &, ) (u) =

Ernrp)(W) _ GW+AUPF(W) _ V(W)

with respect to u, being defined in Eq. (11), one thus obtains

kgT 1+AuB T w'
dén -
Lo ® é‘j(u) Therefore, Eq. (24) can also be rewritten as:

kgxT V(W) xW(u)-V(w)xW’'(u)

Rejoy(w) = =—=xu ) where W'(u) = ABuB~! and V'(u) =u' +

3 -3 _8
272e7(1 — du) + 2AuP7IF(u) |(1 +28) + Ix e 4zew 1 One remarks that: (i) asu — 0,

1+bu 3+cu 3

kgxT .
Bq , being

a well-known relation given by Stokes, Einstein, Sutherland and Reynolds, and (ii) as u — oo,
one has: W2 ~ A?u?® and u[V' x W — V x W'] ~ Zau?/3A%u?B, and therefore, in this highly

one has: W? = 1 and u[V' x W —V x W'] = 1, and therefore: Rgjo;(u— 0) =

degenerate case and at T=0K, our relation (24) is reduced to: Rgjo;(N*, rqca), %, T = 0K) ~

%EFno(Fpo)(N*)/q. In other words, Eq. (24) verifies all the correct limiting conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) can be rewritten as:

_4 _8
(bu 3+2cu 3)

* 2 Epn (u) 4
Regoyve) (N Tagay, %, T = 0K) = = x —mebo— °<zp°) X [1+=x —<1+b =y -g) ,
u cu

Where a = [3vit/4]7%, b=1(2)" and ¢ = 2222205 (r)",

Then, in Tables 3n and 3p, reported in Appendix 1, for given (rgq,x and T), the numerical
results of Vo(g}, Hofg) and Dogp, expressed as functions of N, are obtained by using

Equations (22b, 22a and 24).

In Tables 4n and 4p, reported in Appendix 1, the numerical results of the viscosity coefficient

Vorg)(N*, rqca), %, T) are obtained by using Eq. (22b).

In Tables 5n and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy
Enoe](N", T, % T) , mobility  pog (N, rg@),x T) ,  diffusion  coefficient
Dopg](N*, racay, x, T) , Viscosity coefficient Vorg(N*, racy, % T), and activation energy

AEO[E](N*, Td@a) % T) are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
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Finally, in Tables 6n and 6p, For given X, r,, T and N, the numerical results of reduced
Fermi energy &,01g)(N*,rq@), % T), mobility poe(N*, rq@),x T) , diffusion coefficient
Doe(N*, racay, %, T) , viscosity coefficient Vg (N*, rqc), % T), and activation energy

AEog(N*, rqca), %, T) are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.

CONCLUDING REMARKS

In the n* (p*) — X(x)-crystalline alloy, 0 < x < 1, x being the concentration, the diffusion-
mobility-activation energy-Fermi energy relations, enhanced by : (i) the optico-electrical
phenomenon (O-EP) and the electro-optical phenomenon (E-OP), (ii) our static dielectric
constant law, &(rq(a), X), Tq(a) being the donor (acceptor) d(a)-radius, given in Equations (1a,
1b), (iii) our accurate reduced Fermi energy, .., given in Eqg. (11), accurate with a
precision of the order of 2.11 x 10~* [9], and finally (iv) our optical-and-electrical
conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical

model and Fermi-Dirac distribution function, as those given in our recent works.*™

Some important concluding remarks can be given and discussed as follows.

(I)- Then, in Tables 3n and 3p, reported in Appendix 1, for given X, rq¢,), and T=(4.2 K and
77 K), the numerical results of Vgg), Mo and Dopg;, expressed as functions of N, are
obtained by using Equations (22b, 22a and 24). In particular, for given (X, rq,) and N), those
of o (T) decrease [decrease] with decreasing T, due to the increasing reduced Fermi
energy &nopgy- Further, for given (X, rq) and N) the numerical results of V(g increase with
decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring!*"! and
complex fluids by Wenhao!*®, and for given (x, T and I4q(a)) they increase with increasing N,
in good agreement with those, obtained in complex fluids by Wenhao.*® In other words, with
increasing degeneracy (or with decreasing T and increasing N), both the reduced Fermi

energy &nopg) and the viscosity coefficient V(g increase, according to an equivalence

between the degeneracy-and-viscosity concept.

In Tables 4n and 4p, the numerical results of the viscosity coefficient Vo (N*, rg4ca), x, T),
expressed in (:—I: X C%) are obtained by using Eq. (22b), suggesting that: (i) for given (x, T
and N), they increase with increasing rqc), (ii) for given (X, rqc,) and N) the numerical
results of V() increase with decreasing T, in good agreement with those, obtained in liquids

by Ewell and Eyring"*” and complex fluids by Wenhao™, and (iii) for given (x, T and rq(,))
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they increase with increasing N, in good agreement with those, obtained in complex fluids by
Wenhao.['™® In other words, with increasing degeneracy (or with decreasing T and increasing
N), both the reduced Fermi energy &,o(g) and the viscosity coefficient V(g increase,
according to an equivalence between the degeneracy-and-viscosity concept. In Tables 5n
and 5p, reported in Appendix 1, the numerical results of reduced Fermi energy

Enoe]l(N*, Tq@), %, T) , mobility  popg (N, rrd(a),x,T) ,  diffusion  coefficient
Doe(N*, racay, %, T) , viscosity coefficient Vg (N*, rqca), % T), and activation energy
AEqg) (N*, Tty ey o T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.

In particular, from the numerical results of Vg, one notes that, for given (X, rq) and N),
they increase with decreasing T, in good agreement with those, obtained in liquids by Ewell
and Eyring!*”! and complex fluids by Wenhao.!*® In other words, with increasing degeneracy,

both the reduced Fermi energy &,o(g; and the viscosity coefficient Vg increase, according

to an equivalence between the degeneracy-and-viscosity concept.

Finally, in Tables 6n and 6p, For given X, r,, T and N, the numerical results of reduced
Fermi energy &,o(5)(N*, rq@), % T), mobility o (N, rq@),x T) , diffusion coefficient
Do (N*, rq@), % T) , Vviscosity coefficient VO[E](N*,rd(a),x, T), and activation energy
AEO[E](N*, Td(a) % T), are obtained by using Equations (11, 22a, 24, 22b, 22c), respectively.
In particular, from the numerical results of Vo (N*, rg4ca), x, T), one observes that, for given
(X, rqca) and T), they increase with increasing N, in good agreement with those, obtained in
complex fluids by Wenhao.*® In other words, with increasing degeneracy, both the reduced
Fermi energy &,p)org; and the viscosity coefficient Vo) increase, according to an

equivalence between the degeneracy-and-viscosity concept.
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APPENDIX 1

Table 1: In the X(x) = GaSb,_,P,-crystalline alloy, the different values of energy-band-structure

parameters, for a given x, are given in the following.”!

In the X(X)-crystalline alloy, in which Tdo(ao) = I'sb(Ga) =0-136 nm (0.126 nm), we have [3]:
Eew(®) =1Xx+1x(1—-x)=1 , m®)/m,=0.13(0.5)Xx+0.047 (0.3) X (1—-x) ,
go(x) = 11.1 X x4+ 15.69 X (1 — %), Ego(x) = 1.796 X x + 0.81 X (1 — x).

Table 2: Expressions for G54 (y = EL)’ due to the Fermi-Dirac distribution function, are used to determine the
n(p)

electrical-and-thermoelectric coefficients, suggesting that, with increasing T (or decreasing T) and for given

(N, rg,x), since &, (T) decreases (or increases), the function G, (T) increases (or decreases).

G3/2 ) G, (y) Gs/z ) Gs3(y) G7/2 o) G4(y) G9/2 )
y? | 7yt y? s5y2  7y* 35y2 | 49y* 7y* 21y? | 147y*
(+5+5) (+%5) (+3-30) a+yd) (+30+30) (+2y2+7p) (1+55+5)

Table 3n: For given X, rgq, and T=(4.2 K and 77 K), the numerical results of Vg, Hopg) and Dogj, €xpressed

3 2 3 2
respectively in (:_:1 X Cmizlov%w%) as functions of N, are obtained by using Equations (22b, 22a and

24). In particular, for given (X, ry and N), those of uqE (T) decrease with decreasing T, due to the increasing
reduced Fermi energy §,o(g; (or with increasing degeneracy), and therefore, those of the viscosity coefficient
Vo) increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring™” and
complex fluids by Wenhao.*® Further, for given (x, T and rg), those of Vo increase with increasing N, due
to the increasing reduced Fermi energy &,og; (or with increasing degeneracy), in good agreement with those,
obtained in complex fluids by Wenhao.® In other words, with increasing degeneracy (or with decreasing T and

increasing N), both &g} and Vo g) increase, according to an equivalence between the degeneracy-and-viscosity

concept.
Donor As Sb
rq (nm) 7 0.118 0.136

For x=0 and at T=4.2 K

N (10%° cm™3)

3 5.839[7.634], 45.50 [34.81], 2628 [17.38]  6.766 [8.841], 39.27 [30.05], 22.68 [15.00]
7 8.079 [10.58], 43.63 [33.31], 44.32[29.26]  9.369 [12.26], 37.62 [28.74], 38.21 [25.24]
10 9.254 [12.12], 42.89 [32.73], 55.27 [36.47]  10.73 [14.06], 36.97 [28.23], 47.64 [31.45]

For x=0 and at T=77 K

N (10*° cm™3)

3 1.699 [1.306], 156.4 [203.4], 90.30 [101.5]  1.969 [1.512], 135.0 [175.7], 77.93 [87.69]
7 4.520 [4.124], 77.97 [85.45], 79.21 [75.05]  5.242 [4.781], 67.23 [73.71], 68.30 [64.74]
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10

6.214 [6.146], 63.88 [64.58], 82.31 [71.94]

7.208 [7.128], 55.06 [55.69], 70.96 [62.04]

For x=0.5 and at T=4.2 K

N (10*° cm™3)
3

7

10

22.38 [31.98], 11.87 [8.307], 3.842 [2.201]
31.33[45.01], 11.25 [7.830], 6.406 [3.651]
36.04 [51.86], 11.01 [7.654], 7.957 [4.527]

25.82 [36.84], 10.29 [7.210], 3.329 [1.910]
36.23[51.97], 9.727 [6.780], 5.539 [3.162]
41.69 [59.93], 9.519 [6.623], 6.877 [3.918]

For x=0.5and at T=77 K
N (10*° cm™3)

3

7

10

6.504 [5.464], 40.84 [48.61], 13.21 [12.88]
17.53 [17.54], 20.11 [20.09], 11.45 [9.369]
24.19[26.28], 16.40 [15.10], 11.85 [8.934]

7.504 [6.293], 35.40 [42.21], 11.45 [11.18]
20.26 [20.25], 17.39 [17.40], 9.903 [8.114]
27.99 [30.37], 14.18 [13.07], 10.24 [7.730]

For x=1 and at T=4.2 K

N (10*° cm~3)
3

7

10

58.12 [86.31], 4.565 [3.074], 1.035 [0.553]
82.80 [124.2], 4.254 [2.836], 1.700 [0.899]
95.80 [144.2], 4.142 [2.752], 2.100 [1.107]

66.67 [98.68], 3.978 [2.688], 0.901 [0.483]
95.32 [142.6], 3.694 [2.469], 1.476 [0.783]
110.4 [165.8], 3.593 [2.393], 1.821 [0.963]

For x=1 and at T=77 K

N (10*° cm™3)
3

7

10

16.83 [14.68], 15.77 [18.08], 3.574 [3.251]
46.27 [48.32], 7.613 [7.289], 3.041 [2.311]
64.28 [73.01], 6.173 [5.435], 3.130 [2.187]

19.28 [16.76], 13.75 [15.83], 3.1 15 [2.844]
53.25[55.46], 6.614 [6.350], 2.641 [2.012]
74.07 [83.93], 5.356 [4.727], 2.715 [1.904]

Table 3p:  For given x, ry, and T=(4.2 K and 77 K), the numerical results of Vq(g}, Hog and Do), expressed

3 2 3 2
Vs 1oxem , 10 >;cm ), as functions of N, are obtained by using Equations (22b, 22a and

cm = cm?’

respectively in ( Vs
24). In particular, for given (X, r, and N), those of po[g(T) decrease with decreasing T, due to the increasing
reduced Fermi energy §,0g) (or with increasing degeneracy), and therefore, those of the viscosity coefficient
Voig) increase with decreasing T, in good agreement with those, obtained in liquids by Ewell and Eyring"” and
complex fluids by Wenhao.!"® Further, for given (x, T and r,), those of Vo[ increase with increasing N, due
to the increasing reduced Fermi energy §,(g) (or with increasing degeneracy), in good agreement with those,
obtained in complex fluids by Wenhao.!"® In other words, with increasing degeneracy (or with decreasing T and

increasing N), both §,o[g) and Vg increase, according to an equivalence between the degeneracy-and-

viscosity concept.

Acceptor

r, (nm) 7 0.140 0.144

For x=0 and at T=4.2 K
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N (10%° cm™3)

3 7.407 [235.0], 35.52 [1.119], 20.12 [0.086]
7 10.33 [353.9], 33.97 [0.991], 34.23 [0.135]
10 11.86 [417.3], 33.38 [0.948], 42.76 [0.164]

7.883 [247.4], 33.35 [1.062], 18.84 [0.081]
11.01 [374.0], 31.87 [0.938], 32.08 [0.128]
12.64 [441.4], 31.31 [0.896], 40.09 [0.155]

For x=0 and at T=77 K
N (10*° cm™3)

3 7.405 [230.6], 35.54 [1.141], 20.12 [0.087]
7 10.33 [351.8], 33.97 [0.997], 34.23 [0.136]
10 11.86 [415.8], 33.38 [0.952], 42.76 [0.165]

7.880 [242.7], 33.36 [1.083], 18.85 [0.082]
11.01 [371.7], 31.87 [0.944], 32.08 [0.128]
12.64 [439.8], 31.31 [0.900], 40.09 [0.156]

For x=0.5 and at T=4.2 K

N (10%° cm™3)

3 27.20 [432.6], 9.397 [0.591], 2.815 [0.032]
7 39.29 [695.8], 8.826 [0.498], 4.868 [0.050]
10 45.51 [837.0], 8.624 [0.469], 6.093 [0.060]

28.76 [450.6], 8.847 [0.565], 2.627 [0.030]
41.73 [730.4], 8.295 [0.474], 4.559 [0.047]
48.39 [880.5], 8.102 [0.445], 5.710 [0.057]

For x=0.5 and at T=77 K

N (10%° cm™3)

3 27.16 [416.6], 9.409 [0.613], 2.818 [0.033]
7 39.28 [688.1], 8.829 [0.504], 4.870 [0.050]
10 45.50 [831.3], 8.626 [0.472], 6.094 [0.060]

28.72 [433.6], 8.859 [0.587], 2.629 [0.031]
41.72[722.2], 8.298 [0.479], 4.560 [0.048]
48.38 [874.5], 8.103 [0.448], 5.711 [0.057]

For x=1 and at T=4.2 K

N (10%° cm™3)

3 59.77 [613.3], 3.796 [0.370], 0.629 [0.013]
7 97.68 [1166], 3.402 [0.285], 1.210 [0.021]
10 116.0 [1459], 3.288 [0.261], 1.540 [0.025]

61.43[616.7], 3.610 [0.359], 0.572 [0.012]
102.8 [1208], 3.209 [0.273], 1.125 [0.020]
122.5 [1519], 3.098 [0.250], 1.437 [0.024]

For x=1 and at T=77 K

N (10*° cm™3)

3 59.52[558.7], 3.811 [0.406], 0.631 [0.013]
7 97.59 [1142], 3.405 [0.291], 1.211 [0.021]
10 115.9 [1442], 3.290 [0.264], 1.541 [0.025]

61.15 [556.9], 3.626 [0.398], 0.574 [0.013]
102.7 [1182], 3.212 [0.279], 1.126 [0.020]
122.5 [1501], 3.099 [0.253], 1.438 [0.024]

WWW.Wjert.org

1SO 9001: 2015 Certified Journal

327




Cong et al.

World Journal of Engineering Research and Technology

Table 4n: The numerical results of the viscosity coefficient Vg (N*, rg,%, T), expressed in (% X Cmiz), are

obtained as functions of N, by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with

increasing ry, (ii) for given (X, rq and N) the numerical results of V(g increase with decreasing T, in good

agreement with those, obtained in liquids by Ewell and Eyring"'” and complex fluids by Wenhao

, and (iii) for

given (X, T and ry) they increase with increasing N, in good agreement with those, obtained in complex fluids

by Wenhao."® In other words, as discussed in above Table 3n, with increasing degeneracy (or with decreasing T

and increasing N), both the reduced Fermi energy &,0g) and the viscosity coefficient Vg increase, according

to an equivalence between the degeneracy-and-viscosity concept.

Donor

As

Sb

Sn

rq (nm) [4] 2

0.110

0.118

0.136

0.140

For x=0 and at T=4.2 K

N (10*° cm~3)

3 2
7 2
10 2

4.870[6.372]
6.731 [8.820]
7.708 [10.10]

5.839 [7.634]
8.079 [10.58]
9.254[12.12]

6.766 [8.841]
9.369 [12.26]
10.73 [14.06]

6.815 [8.905]
9.438 [12.35]
10.81 [14.16]

For x=0 and at T=77 K

N (10*° cm~3)

3 2
7 2
10 7

1.417 [1.090]
3.766 [3.438]
5.176 [5.122]

1.699 [1.306]
4.520 [4.124]
6.214 [6.146]

1.969 [1.512]
5.242 [4.781]
7.208 [7.128]

1.983 [1.523]
5.281 [4.816]
7.261 [7.180]

For x=0.5 and at T=4.2 K

N (10%° cm™3)

3 7
7 7
10 2

18.75 [26.85]
26.20 [37.69]
30.11 [43.38]

22.38 [31.98]
31.33 [45.01]
36.04 [51.86]

25.82[36.84]
36.23[51.97]
41.69 [59.93]

26.00 [37.10]
36.49 [52.34]
41.99 [60.36]

For x=0.5 and at T=77 K

N (10%° cm™3)

3 7
7 7
10 7

5.451 [4.589]
14.65 [14.69]
2021 [21.98]

6.505 [5.464]
17.53 [17.54]
24.19 [26.28]

7.504 [6.293]
20.26 [20.25]
27.99 [30.37]

7.557[6.337]
20.41 [20.39]
28.19[30.59]

For x=1and at T=4.2 K

N (10*° cm™3)

3 7
7 7
10 7

49.02 [73.07]
69.57 [104.6]
80.38 [121.3]

58.12 [86.31]
82.80 [124.2]
95.80 [144.2]

66.67 [98.68]
95.32 [142.6]
110.4 [165.8]

67.12[99.33]
95.98 [143.6]
111.2[166.9]
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For x=1and at T=77 K

N (10*° cm™3)

3 2
7 2
10 2

14.21 [12.44]
38.88 [40.73]
53.94 [61.43]

16.83 [14.68]
46.27[48.32]
64.28 [73.01]

19.28 [16.76]
53.25[55.46]
74.07 [83.93]

19.41[16.87]
53.61 [55.84]
74.59 [84.51]

Table 4p: The numerical results of the viscosity coefficient Vo (N*, 15, %, T), expressed in (% X

), are
m

obtained as functions of N, by using Eq. (22b), suggesting that: (i) for given (x, T and N), they increase with

increasing r,, (ii) for given (x, r, and N) the numerical results of V) increase with decreasing T, in good

agreement with those, obtained in liquids by Ewell and Eyring!'” and complex fluids by Wenhao!'®), and (iii) for

given (x, T and r,) they increase with increasing N, in good agreement with those, obtained in complex fluids

by Wenhao.!"¥ In other words, as discussed in above Table 3p, with increasing degeneracy (or with decreasing T

and increasing N), both the reduced Fermi energy §,0[g) and the viscosity coefficient Vq g increase, according

to an equivalence between the degeneracy-and-viscosity concept.

Acceptor

Ga

Mg

In

Cd

r, (nm) 7

0.126

0.140

0.144

0.148

For x=0 and at T=4.2 K

N (10*° cm™3)

3 2
7
10 7

6.700 [216.1]
9.328 [323.7]
10.70 [381.0]

7.407 [235.0]
10.33 [354.0]
11.86 [417.3]

7.883 [247.4]
11.01 [374.0]
12.64 [441.4]

8.484 [262.8]
11.86 [399.0]
13.63 [471.7]

For x=0 and at T=77 K

N (10%° cm™3)

3 2
7 7
10 2

6.697 [212.1]
9.327 [321.8]
10.70 [379.6]

7.405 [230.6]
10.33 [351.8]
11.86 [415.8]

7.880 [242.7]
11.01 [371.7]
12.63 [439.8]

8.481 [257.8]
11.86 [396.6]
13.62 [469.9]

For x=0.5 and at T=4.2 K

N (10*° cm™3)

3 7
7 7
10 7

24.82 [404.1]
35.64 [642.7]
41.22 [770.6]

27.20 [432.6]
39.29 [695.8]
45.51 [837.0]

28.76 [450.6]
41.73[730.4]
48.39 [880.5]

30.69 [472.1]
44.80 [772.9]
52.02 [934.4]

For x=0.5 and at T=77 K

N (10*° cm™3)

3 7
7 7
10 7

24.79 [389.5]
35.63 [635.6]
41.21[765.4]

27.16 [416.6]
39.28 [688.1]
45.50 [831.3]

28.72[733.6]
41.72[722.2]
48.38 [874.5]

30.65 [453.8]
44.79 [764.2]
52.01 [927.9]
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For x=1and at T=4.2 K

N (10*° cm™3)
7 7
10 2

89.73 [1099]
106.0 [1364]

97.68 [1166]
116.0 [1459]

102.8 [1208]
122.5[1519]

109.0 [1255 ]
130.6 [1591]

For x=1 and at T=77 K

N (10*° cm™3)
7 7
10 2

89.65 [1077]
105.9 [1348]

97.59 [1142]
115.9 [1442]

102.7 [1182]
122.4 [1501]

108.9 [1228]
130.5 [1571]

Table Sn: For given x, rq and N, the numerical results of reduced Fermi energy &,0(g)(N", rq, %, T), mobility

Horg)(N*,rq,x, T) , diffusion coefficient Dgg(N*,rg,x,T) , viscosity coefficient Vg (N¥,rg,%,T), and

activation energy AEq[g (N”, rg,%,T), are obtained, as functions of T=[4.2K, 77K, 150K], by using Equations

(11, 22a, 24, 22b, 22c), respectively. In particular, from the numerical results of Vg (N*, g, %, T), one observes

that, for such given (x, rq and N), they increase with decreasing T, in good agreement with those, obtained in

liquids by Ewell and Eyring!"” and complex fluids by Wenhao.!"® In other words, as discussed in above Table

3n, with increasing degeneracy, both the reduced Fermi energy §,o[g and the viscosity coefficient Vg

increase, according to an equivalence between the degeneracy-and-viscosity concept.

Donor

As

Sb

Sn

For x=0 and N=3 x 10'° cm™3,

€no[E) (T=4.2K) N
EnO[E](T=77K) N

EnO[E](T:lSOK) N

105x sz)
Vxs

Ho[E](4.2K) (

Ho[E](77K) (

VXxs

Ho[E](150K) (

VXxs

Do[gca.2x) (

s

Dorgj77K) (

S

104xcm2)
s

Do[gjasok) (

10%x cm?
—) N
10%x cm?

) N
10%xcm?

) N

10%xcm?
)~

N

Vole] (a.2) (ﬂ X i) 7

cm  cm?

VO[E](77K)(EVX S) 7

cm  cm?

VolE] 150K) (eV X i) 7

cm  cm?

2393.249 [2069.091]

130.550 [112.870]

67.0294 [57.95585]

0.4550 [0.3481]

1.5639 [2.0344]

16.263 [24.4734]

2.6278 [1.7377]

9.0301 [10.1554]

93.886 [122.136]
5.8392 [7.6343]
1.6991 [1.3061]

0.1634 [0.1086]

—AEq (5426 (meVx 107¢) 7 11.0102 [19.90308]

—AEqg)(77x) (meV) 7

—AEg[gj1s0x) (MeV) 7

8.1916 [11.71546]
46.2266 [54.9745]

2393.217 [2069.064]
130.54852 [112.869]
67.0285 [57.95508]

0.3927 [0.3005]
1.3497 [1.7567]
14.036 [21.1336]
2.2678 [1.5005]
7.7932 [8.7694]
81.026 [105.467]
6.7660 [8.8409]
1.9687 [1.5126]

0.1893 [0.1257]

11.0105 [19.90362]
8.19171 [11.71561]
46.2269 [54.97484]

2393.215 [2069.062]
130.54842 [112.868]
67.0284 [57.95503]

0.3899 [0.2984]
1.3399 [1.7441]
13.934[20.9817]
2.2514[1.4897]
7.7369 [8.7063]
80.441 [104.709]
6.8152 [8.9049]
1.9830 [1.5235]

0.1907 [0.1266]

11.0106 [19.90365]
8.19172 [11.71562]
46.2270 [54.97486]
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For x=0.5 and N=7 x 101° cm~3, one has:

€no[) (T=4.2K) N 2360.367 [1932.747]
Eno[E)(T=77K) N 128.757 [105.4342]
€no[E|(T=150K) N 66.1089 [54.1397]

105x cmz)
e N
Vxs

HO[E](4.2K) ( 0.1125[0.0783]

10%x cm?
Wo[E](77K) (T) N 0.2011 [0.2009]
10%x cm?
Ho[E](150K) (T) 1.3755 [1.8328]

4 2
0 xCm) N 0.6406 [0.3651]

S

Do[g)ca2x) (

104xcm?
) s
S

DO[E](77K) ( 1.1451[0.9369]

104><cm2)
s

Do(gj1s0K) ( 7.8315 [8.5435]

Vol azi (oo x—) 7 31.332[45.009]

cm  cm?

\
Vore) 70 (o X =) 7 17.526 [17.539]
\
Vore) asok) (o X =) 7 2.562 [1.9228]

—AEq[g@a.2x) (MeVX 107% » 3.6688 [6.60513]
—AEqg) 77K (MeV) 7 3.8549 [6.25366]

—AEo[g)(150K) (MeV) 7 32.3648 [40.7571]

2360.222 [1932.628]
128.749 [105.4277]
66.1049 [54.1364]

0.0973 [0.0678]

0.1739 [0.1740]

1.1897 [1.5873]

0.5539 [0.3162]

0.9903 [0.8114]

6.7734 [7.3989]
36.227 [51.973]
20.263 [20.251]

2.962 [2.2200]

3.6692 [6.60594]

3.85525[6.25416]
32.3662 [40.7586]

2360.214 [1932.622]
128.748 [105.4274]
66.1046 [54.1362]

0.0966 [0.0673]

0.1727 [0.1728]

1.1813 [1.5762]

0.5500 [0.3139]

0.9833 [0.8056]

6.7253 [7.3468]
36.487 [52.342]
20.408 [20.394]

2.983[2.2358]

3.6693 [6.60599]
3.85528 [6.25419]
32.3663 [40.7587]

For x=1 and N=10%° cm 3, one has:

€noE) (T=4.2K) N 2101.491 [1667.851]
EnolE)(T=77K) N 114.637 [90.9872]
€no[E|(T=150K) N 58.8627 [46.7262]

5 2
107X cm ) N 0.0414 [0.0275]

VXxs

HO[E](4.2K) (

5 2
10ﬂ) N 0.0617[0.0543]

Vxs

Ho[E](77K) (

105x cmz)
VXxs

Ho[E](150K) ( 0.3309[0.4114]

10%xcm?
) s
s

DoiEja2x) ( 0.2100 [0.1107]

10%xcm?
)~
s

Dogj(77x) ( 0.3130[0.2187]
10%xcm?
=)

Do[gj(150K) ( 1.6774 [1.6546]

VolE] (4.2x) (ﬂx S) 2

cm  cm?

95.796 [144.19]

\
Vore o7t (o X =) 7 64.277 [73.007]

Vore ason) (o X =) 7 11.989 [9.6444]

cm  cm?
~AEoqgak (meVx 107%) 7 2.3857 [4.2830]
—AEo 7K (MeV) 7 2.6477 [4.5159]

—AEqgasok) (meV) 7 26.8628 [34.9618]

2100.987 [1667.450]
114.610 [90.9654]
58.8486 [46.7150]

0.0359 [0.0239]
0.0535 [0.0473]
0.2872 [0.3579]
0.1821 [0.0963]
0.2715 [0.1901]
1.4555 [1.4391]
110.41 [165.80]
74.070 [83.930]

13.812 [11.0851]

2.3869 [4.2850]
2.6487 [4.5175]
26.8683 [34.9676]

2100.959 [1667.428]
114.608 [90.9641]
58.8478 [46.7144]

0.0357 [0.0237]

0.0532 [0.0469]

0.2852 [0.3354]

0.1809 [0.0956]

0.2696 [0.1888]

1.4454 [1.4292]
111.18 [166.94]
74.588 [84.506]

13.909 [11.1610]

2.3870 [4.2851]
2.6488 [4.5176]

26.8686 [34.9679]
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Table Sp: For given x, r, and N, the numerical results of reduced Fermi energy &0 (N7, 1y, %, T), mobility

Hore](N", 15, %, T) , diffusion coefficient Dgpg(N*, 15, %, T) , viscosity coefficient Vg (N7, 1,,%,T), and

activation energy AEq g (N”, 1,,%, T), are obtained, as functions of T=[4.2K, 77K, 150K], by using Equations

(11, 22a, 24, 22b, 22c), respectively. In particular, from the numerical results of Vo[ (N*, 1y, X, T), one observes

that, for given (X, r, and N), they increase with decreasing T, in good agreement with those, obtained in liquids

by Ewell and Eyring!'” and complex fluids by Wenhao."® In other words, as discussed in above Table 3p, with

increasing degeneracy, both the reduced Fermi energy §,o[g) and the viscosity coefficient Vg increase,

according to an equivalence between the degeneracy-and-viscosity concept.

Acceptor

Ga

Mg

In

For x=0 and N=3 x 101° cm
2354.186 [318.870]

EpolE) (T=4.2K) N
EpO[E](T=77K) N
EpO[E](T=150K) N

105X cm?
Ho[E](4.2K) (T) N

105x cm?
Ho[E](77K) (—sz ) N

10%x cm?
Ho[E](150K) \ ™ Vs N
104 2
Xcm ) N
N

Do[g)a2x) (

10%xcm?
)~
s

Do(gj771) (

10%xcm?
) S
s

Do[gjasok) (

Volg] (a.2x) (ﬂ X i) 7

cm  cm?

Vorig) (77x) (% X ﬁ) 2
Volg] (150K) (:—:1 X cmiz)
—AEqg)(a.2x) (€VX 10_9) 7
~AEgqgi77i0 (€VX 107%) 7

—6
_AEO[E](150K) (eVXx 10 ) 7/

-3
9

128.42 [17.4642]
65.936 [9.070]

0.3934[0.0122]
0.3935 [0.0124]
0.3939[0.0131]
2.2344[0.0094]
2.2350 [0.0095]

2.2367 [0.0099]
6.6997 [216.15]
6.6974 [212.11]

6.6909 [201.40]
0.3760 [20.49]
23165 [125.61]
17.1211 [914.60]

2347.046 [317.903]

128.03 [17.41]
65.736 [9.044]

0.3552[0.0112]

0.3553 [0.0114]

0.3557 [0.0120]

2.0117 [0.0086]

2.0123 [0.0087]

2.0138 [0.0091]

7.4076 [235.04]

7.4050 [230.61]

7.3977 [218.90]

0.3783 [20.62]
2.3307 [126.39]
17.2254 [920.05]

2341.965 [317.215]

127.75 [17.37]
65.594 [9.025]

0.3335[0.0106]
0.3336 [0.0108]
0.3339 [0.0114]
1.8843 [0.0081]
1.8848 [0.0082]
1.8863 [0.0086]
7.8827 [247.42)

7.8799 [242.75]

7.8722 [230.37]
0.3799 [20.71]
2.3408 [126.94]
17.3002 [923.95]

For x=0.5 and N=7 x 101° cm~3, one has:

EpolE) (T=4.2K) N
EpolEI(T=77K) N
EpolEI(T=150K) N

(105>< sz) N

Ho[E](4.2K) Vs

10%x cm?
VXxs

Ho[E](77K) (

10%x cm?

HO[E](150K) (

Vxs

10%xcm?

Do[g](a.2x) (

s

2297.6 [416.258]

125.33 [22.759]

64.353 [11.763]

0.0975 [0.0054]
) N 0.0976 [0.0055]
) N 0.09769 [0.0056]

) N 0.5408 [0.0054]

2286.1 [414.163]

124.70 [22.645]

64.029 [11.7047]

0.0882 [0.0050]

0.0883 [0.0050]

0.0884 [0.0052]

0.4868 [0.0050]

2277.8 [412.67]
124.25 [22.564]
63.799 [11.663]

0.0830 [0.0047]

0.0830 [0.0048]

0.08307 [0.0050]

0.4559 [0.0047]
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104xcm?
) N
S

Dorej77x) (

10%xcm

Do[e)c1s0k) ( . 2)

Vole] (a.2x) (ev X i) 7

cm  cm?

Vore (77x) (ﬂ X L) 7

cm  cm?

eV S
Vo[g] (1501 (; X W) 7
-9
_AEO[E](4.2]() (eV>< 10 ) 7
-6
_AEO[E](77K) (eVx 10 ) 7

-6
—AEqgasox) (VX 10 7)) 72

0.54096 [0.0055] 0.48697 [0.0050] 0.4560 [0.0048]
0.5414 [0.0056] 0.4874 [0.0051] 0.4564 [0.0049]
35.642 [642.71] 39.295 [695.83] 41.734 [730.40]
35.629 [635.61] 39.2809 [688.07] 41.719[722.20]
35.592 [616.36] 39.2403 [667.0] 41.675 [699.95]
0.3947 [12.02] 0.3987 [12.15] 0.4016 [12.22]
2.4320 [73.88] 2.4566 [74.64] 2.4744[75.17)
17.974 [541.43] 18.156 [546.86] 18.288 [550.77]

For x=1 and N=102° ¢m 3, one has:

Epore(T=4.2K) N 1966.59 [405.81] 1941.29 [400.59] 1923.20 [396.85]
Epoisl(T=77K) N 107.28 [22.191] 105.90 [21.907] 104.91 [21.704]
Eoometsoky ™ 55.09 [11.473] 54,38 [11.328] 53.87 [11.225]
5 2

Mo(E)(4.2K) (w\]%) N 0.0362 [0.0028] 0.0329 [0.0026] 0.03098 [0.0025]
5 2

MoE](77K) (“’VXTCS"‘) N 0.03623 [0.0085] 0.03290 [0.0026] 0.03099 [0.0025]
5 2

Ho[E](150K) (“’VXTCS"‘) N 0.03628 [0.0029] 0.03294 [0.0027] 0.03104 [0.0026]
10%xcm?

DO[E](4.2K)( . ) N 0.1718[0.0027] 0.1540 [0.0025] 0.1437 [0.0024]
10%*xcm?

DO[E](77K)( . ) N 0.1719 [0.0029] 0.1541 [0.0025] 0.1438 [0.0024]
10%*xcm?

Do(ej(150K) (f) N 0.1721[0.0028] 0.1542 [0.0026] 0.1440 [0.0025]

Vols] @21 (%xi) 7 105.98 [1363.7] 116.0 [1459.0] 122.52 [1519.1]

Vor] 7760 (%xi) ” 105.93 [1348.8] 115.9 [1441.6] 122.46 [1500.7]

Vorg) asoro (o x =) 105.78 [1304.9] 115.7 [1394.6] 122.28 [1450.8]

—AEoqgyaai (VX 107%) 7 0.5388 [12.653] 0.5529 [12.985] 0.5634 [13.231]

—AEqomo (VX 1076 2 3.319 [77.7237] 3.407 [79.7566] 3.471 [81.259]

—AEqmmason €V 1070 2 24.531 [569.3187] 25.175 [584.0627] 25.650 [594.95]
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Table 6n: For given x, rq, T=(4.2K, 77K,

150K), the numerical results of

reduced Fermi energy

€noe](N", 1q, %, T), mobility porg(N*, rg,x,T), diffusion coefficient Do (N*, rq, %, T) , viscosity coefficient

Vorg)(N", 14,x,T), and activation energy AEq(N",rg,x,T), are obtained, as functions of N=[NI1=3 X

10'° cm~3, N2=7 X 10'° cm~3, N3=102° cm3

In particular, from the numerical results of Vg

], by using Equations (11, 22a, 24, 22b, 22c¢), respectively.

(N*,1rq,%x, T), one observes that, for given (x, rq and T), they

increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao.'"™™ In other

words, as discussed in above Table 3n, with increasing degeneracy, both the reduced Fermi energy &,o(g; and

the viscosity coefficient Vg

concept.

increase, according to an equivalence between the degeneracy-and-viscosity

Donor As

Sb

Sn

For x=0 and T=4.2 K

EnoE(N1) N 2393.25 [2069.09]
EnoE1(N2) N 4210.35 [3640.07]
Eno[EI(N3) N 5340.58 [4617.22]
105x cm?
HO[E](Nl)( Vs ) N 0.4550 [0.3481]
105x cm?
Hol[E] (Nz)( VxS ) N 0.4363[0.3331]
105x cm?
HolE] (N3)( T ) N 0.4289 [0.3273]
10%xcm?
Dog (Nl)( - ) 2.6278 [1.7377]
2
Dorgjnz) (1 Zcm) N 4.4320 [2.9258]
10%*xcm?
Do (Ns)( ) N 5.5273 [3.6469]
\%
Vo v (5o x =) 7 5.8392 [7.6343]
Vv
Vo v (S x =) 7 8.0786 [10.580]
\%
Vore ava) (S x =) 7 9.2541 [12.126]

—AEogam €Vx 1079 7 11.01026 [19.9031]

~AEogng (€VX 107%) 2 3.55747 [6.430846]

~AEogng €VX 107%) 2 221106 [3.996944]

2393.22 [2069.064]
4210.323 [3640.05]
5340.56 [4617.20]

0.3927 [0.3005]

0.3762 [0.2874]

0.3697 [0.2823]

2.2678 [1.5005]

3.8215 [2.5239]

4.7645 [3.1447]
6.7660 [8.8409]
9.3692 [12.265]

10.735 [14.062]

11.01055 [19.90362]
3.557514 [6.430920]
2.211080 [3.996976]

2393.21[2069.062]
4210.321 [3640.04]
5340.55 [4617.19]

0.3899 [0.2984]
0.3734[0.2853]
0.3670 [0.2802]
2.2514[1.4897]
3.7937 [2.5056]
4.7298 [3.1219]
6.8152 [8.9049]

9.4377 [12.354]

10.814 [14.165]
11.01057 [19.90365]
3.557516 [6.430924]
2.211081 [3.996978]

For x=0.5 and T=77 K, one has:

EnoE(Ny) N 73.1794 [59.9285]

EnojE(N2) N 128.7568 [105.434]

EnofEI(N3) N 163.3261 [133.7399]
10°x cm?

Ho[E](l\n)( e ) N 0.4084 [0.4861]
10°x cm?

uom](m)( e ) N 0.2011 [0.2009]

105x cm
P-o[E](N3)( Vs ) N 0.1640[0.1510]

73.1689 [59.9199]
128.7489 [105.428]
163.3191 [133.7341]

0.3540 [0.4221]

0.1739 [0.1740]

0.1418 [0.1307]

73.1683 [59.9194]
128.7485 [105.427]
163.3187 [133.7338]

0.3515 [0.4192]

0.1727 [0.1728]

0.1408 [0.1298]
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10*xcm?

Dogjon

10%*xcm?

(=
Doejon) (F-
(=

Do[gjns)

eV
Vore (v (Cm

Vo(e (n3) (
—AEqg)(n1) (meV)
—AEqg)(nz) (meV)

—AEqg)(n3) (meV)

10*xcm? )

)
Vorm oo (o X ) 7
) 7

1.3215 [1.2879]

1.1451 [0.9369]

1.1852 [0.8934]
6.5046 [5.4645]
17.526 [17.539]

24.193 [26.280]
8.1982 [11.7240]
3.8549 [6.2537]
2.6439 [4.51013]

1.1451 [1.1180]

0.9903 [0.8114]

1.0243 [0.7730]
7.5046 [6.2935]
20.263 [20.251]

27.991 [30.369]
8.1995 [11.7256]
3.8552 [6.2541]
2.6440 [4.51041]

1.1371[1.1102]

0.9833 [0.8056]

1.0170 [0.7675]
7.5575 [6.3373]
20.408 [20.394]

28.193 [30.586]
8.1996 [11.7257]
3.8553 [6.2542]
2.6441 [4.51043]

For x=1 and T=150 K, one has:

EnomN) N

EnO[E](NZ) N

EnO[E](N3) N
10°x cm?

Ho[E](N1) Vs
Ho[E](N2)
HO[E](N3)
Dorejeng
Dogjn2)

Dorjna)

Vorer v (:_V X iz) 7

m cm

eV S
Vorsi o (G X )

eV S
Vorei o (g X 3) 7

_AEO[E](Nl) (meV) Vs

—AEg[g)nz) (MeV) 7

_AEO[E](N3) (meV) Vs

26.3619 [20.9442]
46.3983 [36.8365]
58.8627 [46.7262]

1.6457 [2.1848]

0.5215 [0.6658]

0.3309 [0.4114]

3.7252[3.9207]

2.0827 [2.1097]

1.6774 [1.6546]

1.6122 [1.2145]

6.7540 [5.2900]

11.989 [9.6444]
463387 [55.112]
32.3970 [40.7955]
26.8629 [34.9618]

26.3408 [20.9275]
46.3824 [36.8239]
58.8486 [46.7150]

1.4363 [1.9131]

0.4532[0.5801]

0.2872 [0.3579]

3.2486 [3.4304]

1.8094 [1.8376]

1.4555 [1.4391]

1.8465 [1.3863]

7.7701 [6.0701]

13.812 [11.085]
46.3590 [55.133]
32.4051 [40.8040]

26.868305 [34.9676]

26.3396 [20.9266]
46.3815 [36.8232]
58.8478 [46.7144]

1.4268 [1.9008]

0.4501 [0.5762]

0.2852 [0.3554]

3.2269 [3.4081]

1.7970 [1.8252]

1.4454 [1.4292]

1.8588 [1.3953]

7.8237[6.1112]

13.909 [11.161]
463601 [55.134]
32.4056 [40.8045]
11.4406 [34.9679]
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Table 6p: For given x, r, and T=(4.2K, 77K, 150K), the numerical results of

reduced Fermi energy

Epore](N", 15, %, T), mobility popg(N* 1y, %, T), diffusion coefficient Do (N*, 1y, %, T) , viscosity coefficient

Vorg)(N",1,,%,T), and activation energy AEqg (N7, 1,,% T), are obtained as functions of N=[N1=3 X

10'° cm~3, N2=7 X 10'° cm~3, N3=102° cm3

In particular, from the numerical results of Vg

], by using Equations (11, 22a, 24, 22b, 22c), respectively.

(N*,1,,x,T), one observes that, for given (X, r, and T), they

increase with increasing N, in good agreement with those, obtained in complex fluids by Wenhao [18]. In other

words, as discussed in above Table 3p, with increasing degeneracy, both the reduced Fermi energy §,0(g; and

the viscosity coefficient Vg

concept.

increase, according to an equivalence between the degeneracy-and-viscosity

Acceptor

Mg

In

For x=0 and T=4.2 K

EpomNy N
EpO[E](NZ) N
EpO[E](N3) N

105x cm?
HO[E](Nl)( Vs )

[N}

105x cm

“0[E<N2>( Vs ) ~

105x cm

otz (M)

10%xcm?

Dogjony

S

S

Do[gjvg) 10txem? N
Vorr o (55 % ) 7
Vore v (5 X o) 7
Vote ov9) (5 X ) 7

-9
_AEO[E](Nl) (eVx 10 ) 7

-9
_AEO[E](NZ) (CVX 10 )

-9
_AEO[E](N3) (CVX 10 ) 7

N

(=)
Dogjon) (% Xsz) N
(=)

2354.19 [318.870]
4181.0 [566.300]
5314.5 [719.834]

0.3934 [0.0122]

0.3765 [0.0108]

0.3700 [0.0104]

2.2344[0.0094]

3.7981 [0.0148]

4.7446 [0.0180]
6.6997 [216.15]
9.3285 [323.76]

10.702 [380.99]

0.3760 [20.4934]

0.1192 [6.4975]
0.0738 [4.0214]

2347.05 [317.903]
4175.6 [565.575]
5309.7 [719.191]

0.3552[0.0112]

0.3397 [0.0099]

0.3338 [0.0095]

2.0117 [0.0086]

3.4227[0.0135]

4.2762 [0.0164]
7.4076 [235.04]
10.332 [353.98]

11.858 [417.31]
0.3783 [20.6183]
0.1195 [6.5142]
0.0739 [4.0286]

2341.96 [317.215]
4171.8 [565.059]
5306.4 [718.733]

0.3335[0.0106]
0.3187 [0.0094]
0.3131 [0.0090]
1.8843 [0.0081]
3.2082 [0.0128]
4.0087 [0.0155]
7.8827 [247.42]

11.007 [373.99]

12.637 [441.43]
0.3799 [20.7078]
0.1197 [6.5261]
0.0740 [4.0337]

For x=0.5 and T=77 K, one has:

EpoEI(ND)

EpolEI(N2) N

$polE|(N3) N
105x cm?

HO[E](M)( Vs )

HoE|(Nz) (105>< cm2) N

VXs

105x cm?
Ho[E](N3) ( Vs )

68.5993 [12.5255]
125.33 [22.7594]
160.294 [29.0812]

0.1037 [0.0066]

0.0976 [0.0055]

0.0954 [0.0051]

67.7452 [12.3720]
124.70 [22.6454]
159.737 [28.9804]

0.0941 [0.0061]

0.0883 [0.0050]

0.0862 [0.0047]

67.135 [12.2623]
124.25 [22.5642]
159.340 [28.9086]

0.0886 [0.0059]

0.0830 [0.0048]

0.0810 [0.0045]
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0.3146 [0.0036]

10%xcm?
Dogjon )

0.5410 [0.0055]

0.6764 [0.0066]

(=
Do[E N2 (1 Xcm )
(=

10%xcm
Do[gjns) )

Voteiovn) (o X ) 7
Vo(el (n2) ( C;z) 7

cmz) 7

_AEO[E](Nl) (CVX 10_ ) 7

24.793 [389.51]
35.629 [635.61]

Vore ave) (S 41.215 [765.40]
8.1195 [244.93]
—AEoap VX 107% 2 2.4320([73.882]

—AEqgms (VX 1070 2 1.4868 [45.221]

0.2818 [0.0033]
0.4870 [0.0050]

0.6094 [0.0060]
27.164 [416.58]
39.281 [688.07]

45.505 [831.33]
8.3255 [251.08]
2.4566 [74.629]
1.4972 [45.536]

0.2629 [0.0031]

0.4560 [0.0048]

0.5711 [0.0057]
28.722 [433.61]
41.719 [722.20]

48.378 [874.50]

8.4777 [255.62]
2.4744 [75.168]
1.5047 [45.763]

For x=1 and T=150 K, one has:

SpofEI(N1) ¥
EpO[E](NZ) N
EpO[E](N3) N

Ho[E](N1) Vs

Ho[E](N2)

HO[E](N3)

Dofejvy

Dofejvz)

Dorjna)

Vorer v (:_V X iz) 7

m cm

eV S
Vo(g) (n2) (a X m)

eV S
Vore) (v3) (a X m) 7

_AEO[E](Nl) (meV) Vs
_AEO[E](NZ) (meV) 2

—AEq[g)(n3) (meV) 7

20.475 [4.4435]
42.1146 [8.8304]
55.0870 [11.4730]

0.0419 [0.0050]
0.0375 [0.0033]
0.0363 [0.0029]
0.0734 [0.0020]
0.1360 [0.0024]
0.1721 [0.0028]
55.812 [462.68]

89.439[1019.6]

105.78 [1304.9]
0.1779 [3.3728]
0.0420 [0.9655]
0.0245 [0.5693]

19.301 [4.1758]
41.3034 [8.6658]
54.3787 [11.3283]

0.0385 [0.0049]
0.0341 [0.0031]
0.0329 [0.0027]
0.0637 [0.0019]
0.1213 [0.0022]
0.1542 [0.0026]
58.849 [466.39]

97.353 [1079.4]

115.75 [1394.6]
0.2002 [3.5439]
0.0436 [1.0029]
0.0252 [0.5841]

18.445 [3.9691]
40.7218 [8.5480]
53.8724 [11.2249]

0.0367 [0.0048]
0.0322 [0.0029]
0.0310 [0.0026]
0.0579 [0.0018]
0.1128 [0.0021]
0.1440 [0.0025]
60.397 [466.83]

102.45 [1115.3]

122.28 [1450.8]
0.2193 [3.6300]
0.0449 [1.0310]
0.0256 [0.5949]
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