World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 4.326

CONNECTED WEIGHT DOMINATING EDGE SET ON S - VALUED GRAPHS

S. Mangala Lavanya¹ and M. Chandramouleeswaran*²

¹Sree Sowdambika College of Engineering, Aruppukottai - Tamilnadu, India. ²Saiva Bhanu Kshatriya College, Aruppukottai – Tamilnadu, India.

Article Received on 30/06/2017 Article Revised on 21/07/2017 Article Accepted on 11/08/2017

*Corresponding Author M. Chandramouleeswaran Saiva Bhanu Kshatriya College, Aruppukottai – Tamilnadu, India.

ABSTRACT

Recently, Chandramouleeswaran et.al. introduced the notion of semiring valued graphs. Since then several properties of S-Valued graphs have been studied by others. In our earlier paper, we studied the notion of edge domination on S-Valued graphs and Strong and Weak

edge domination on S-Valued graphs. In this paper, we study the concept of connected weight dominating edge set on S-Valued graphs.

KEYWORDS: Edge domination, Edge domination number, Connected weight edge domination.

1. INTRODUCTION

The study of domination set in graph theory was formalised as a theoritical area in graph theory by Berge.^[2] The concept of edge domination number was introduced by Gupta^[3] and Mitchell and Hedetniemi.^[8] Sampath Kumar and Walikar^[10] established the new concept of domination called the connected domination number of a graph. The connected edge domination in graphs was introduced by Arumugam and Velammal.^[1] In,^[9] the authors have introduced the notion on semiring valued graphs. In^[4] and^[5] the authors studied the concept of vertex domination and connected weight dominating vertex set on S-valued graphs. In^[7] we studied the notion of edge domination on S-valued graphs. Motivated by the work on connected edge domination on a crisp graph,^[11] in this paper we study the concept of connected weight dominating edge set on S-valued graphs.

2. PRELIMINARIES

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1:^[6] A semiring (S, +, .) is an algebraic system with a non-empty set S together with two binary operations + and . such that

- (1) (S, +, 0) is a monoid.
- (2) (S, .) is a semigroup.
- (3) For all a, b, c \in S , a . (b+c) = a . b + a . c and (a+b) . c = a . c + b . c
- $(4) \ 0. \ x = x \ . \ 0 = 0 \ \forall \ x \ \in \ S.$

Definition 2.2:^[6] Let (S, +, .) be a semiring. \leq is said to be a Canonical Pre-order if for a, $b \in S$, $a \leq b$ if and only if there exists an element $c \in S$ such that a + c = b.

Definition 2.3:^[11] An edge dominating set X of is called a connected edge dominating set of G if the induced subgraph $\langle X \rangle$ is connected. The connected edge domination number $\gamma'_c(G)$ (or γ'_c for short) of G is the minimum cardinality taken over all connected edge dominating sets of G.

Definition 2.4:^[9] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring (S, +, .), a semiring-valued graph (or a S - valued graph), G^S is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma: V \to S$ and $\psi: E \to S$ is defined to be $\psi(x, y) = \begin{cases} \min\{\sigma(x), \sigma(y)\}, if\sigma(x) \leq \sigma(y) \text{ or } \sigma(y) \leq \sigma(x) \\ 0, otherwise \end{cases}$

for every unordered pair (x, y) of $E \subset V \times V$. We call σ , a S - vertex set and ψ , a S - edge set of S - valued graph G^S. Henceforth, we call a S – valued graph simply as a S - graph.

Definition 2.5:^[4] A vertex $v \in G^s$ is said to be a weight dominating vertex if $\sigma(u) \preceq \sigma(v) \forall u \in N_s[v]$.

Definition 2.6:^[4] A subset $D \subseteq V$ is said to be a weight dominating vertex set if for each $v \in D$, $\sigma(u) \preceq \sigma(v) \forall u \in N_s[v]$.

Definition 2.7:^[7] Consider the S-valued graph $G^s = (V, E, \sigma, \psi)$. An edge $e \in G^s$ is said to be a weight dominating edge if $\psi(e_i) \preceq \sigma(e) \forall e_i \in N_s[e]$

Definition 2.8:^[7] Consider the S-valued graph $G^{s} = (V, E, \sigma, \psi)$. A subset $D \subseteq E$ is said to be a weight dominating edge set if for each $e \in D, \psi(e_{i}) \preceq \sigma(e) \forall e_{i} \in N_{s}[e]$.

Definition 2.9:^[7] Consider the S- valued graph $G^s = (V, E, \sigma, \psi)$. If D is weight dominating edge set of G^S, then the scalar cardinality of D is defined by $|D|_s = \sum_{v \in D} \psi(e)$.

Definition 2.10:^[5] Consider the S-valued graph $G^{s} = (V, E, \sigma, \psi)$. A connected weight dominating vertex set $D \subseteq V$ of G^{s} is a weight dominating vertex set that induces a connected subgraph of G^{s} .

Definition 2.11:^[9] A S-valued graph $G^s = (V, E, \sigma, \psi)$ is said to be edge regular S-valued graph, if $\psi(e) = a$ for all $e \in E$ and some $a \in S$.

3. Connected weight dominating edge set on S -Valued Graphs

In this section, we introduce the notion of Connected weight dominating edge set on S-valued graph, analogous to the notion in crisp graph theory, and prove some simple results.

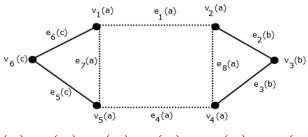
Definition 3.1: Consider the S- valued graph $G^s = (V, E, \sigma, \psi)$. A weight dominating edge set $F \subseteq E$ of is called a connected weight dominating edge set of G^s if the induced subgraph $\langle F^s \rangle$ is connected.

Example 3.2: Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

+	0	a	b	с		0	a	b	
0	0	a	b	с	0	0	0	0	
a	a	a	а	а	a	0	a	a	
b	b	a	b	b	b	0	b	b	
с	с	a	b	с	c	0	b	b	

Let be a canonical pre-order in S, given by

 $0 \leq 0, 0 \leq a, 0 \leq b, 0 \leq c, a \leq a, b \leq b, b \leq a, c \leq c, c \leq a, c \leq b$ Consider the S-graph $G^s = (V, E, \sigma, \psi)$



Define $\sigma: V \to S$ by $\sigma(v_1) = \sigma(v_2) = \sigma(v_4) = \sigma(v_5) = a, \sigma(v_3) = b, \sigma(v_6) = c$ and $\psi: E \to S$ by $\psi(e_1) = \psi(e_8) = \psi(e_4) = \psi(e_7) = a, \psi(e_2) = \psi(e_3) = b, \psi(e_5) = \psi(e_6) = c$. Clearly $F = \{e_1, e_4, e_7, e_8\}$ is a weight dominating edge set and also $\langle F^S \rangle$ is connected.

Therefore F is a connected weight dominating edge set of G^S. Here $F_1 = \{e_1, e_7, e_4\}, F_2 = \{e_7, e_4, e_8\}, F_3 = \{e_4, e_8, e_1\}, F_4 = \{e_8, e_1, e_7\}$ are all connected weight dominating edge sets.

Definition 3.3: Consider the S- valued graph $G^s = (V, E, \sigma, \psi)$ If F is connected weight dominating edge set of G^s , then the scalar cardinality of F is defined by $|F|_s = \sum_{x \in F} \psi(e)$.

In example 3.2, the scalar cardinality of $|F|_{s} = |F_{1}|_{s} = |F_{2}|_{s} = |F_{3}|_{s} = |F_{4}|_{s} = a$.

Definition 3.4: Consider the S- valued graph $G^s = (V, E, \sigma, \psi)$. A subset $F \subseteq E$ is said to be a minimal connected weight dominating edge set of G^s if

(1) F is a connected weight dominating edge set.

(2) No proper subset of F is a connected weight dominating edge set.

In example 3.2, F_1, F_2, F_3, F_4 are all minimal connected weight dominating edge sets.

Definition 3.5: Consider the S- valued graph $G^{s} = (V, E, \sigma, \psi)$. The connected edge domination number of G^{s} denoted by $\gamma_{CE}^{\ G}(G^{s})$ is defined by $\gamma_{CE}^{\ G}(G^{s}) = (|F|_{s}, |F|)$ where F is the minimal connected weight dominating edge set.

In example 3.2, F_1, F_2, F_3, F_4 are all minimal connected weight dominating edge sets with connected edge domination number

$$\gamma_{CE}^{G}(G^{S}) = (|F_{1}|_{S}, |F_{1}|) = (|F_{2}|_{S}, |F_{2}|) = (|F_{3}|_{S}, |F_{3}|) = (|F_{4}|_{S}, |F_{4}|) = (a,3).$$

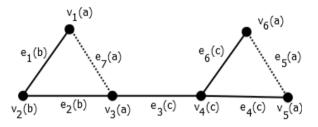
Remark 3.6: Minimal connected weight dominating edge set in a S-valued graph need not be unique in general.

In example 3.2, F_1, F_2, F_3, F_4 are all minimal connected weight dominating edge sets.

Remark 3.7: From the definition it follows that any connected weight dominating edge set is a weight dominating edge set, in which the induced subgraph is connected. Thus we have every connected weight dominating edge set is a weight dominating edge set. However, the converse need not be true as seen from the following example.

Example 3.8: Consider the semiring $(S = \{0, a, b, c\}, +, \cdot)$ with canonical pre-order given in example 3.2.

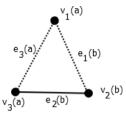
Consider the S-graph $G^{s} = (V, E, \sigma, \psi)$



Define $\sigma: V \to S$ by $\sigma(v_1) = \sigma(v_3) = \sigma(v_5) = \sigma(v_6) = a, \sigma(v_2) = b, \sigma(v_4) = c$ and $\psi: E \to S$ by $\psi(e_1) = \psi(e_2) = b, \psi(e_3) = \psi(e_4) = \psi(e_6) = \psi(e_7) = \psi(e_5) = a$. Here $F = \{e_5, e_7\}$ is a weight dominating edge set of G^S . But $\langle F^S \rangle$ is not connected. Therefore F is not a connected weight dominating edge set of G^S .

Remark 3.9: We observe that any subgraph induced by a subset of edges of G^{S} may be connected. But the edge set need not be a weight dominating edge set, as seen in the following example.

Example 3.10: Consider the semiring $(S = \{0, a, b, c\}, +, \cdot)$ with canonical pre-order given in example 3.2. Consider the S-graph $G^{s} = (V, E, \sigma, \psi)$



Define $\sigma: V \to S$ by $\sigma(v_1) = \sigma(v_3) = a$, $\sigma(v_2) = b$ and $\psi: E \to S$ by $\psi(e_1) = \psi(e_2) = b$, $\psi(e_3) = a$.

Here $F = \{e_1, e_3\}$ is a subset of edges of G^S is connected but F is not a weight dominating edge set.

Definition 3.11: Consider the S- valued graph $G^s = (V, E, \sigma, \psi)$. A subset $F \subseteq E$ is said to be a maximal connected weight dominating edge set of G^s if

- (1) F is a connected weight dominating edge set.
- (2) If there is no subset F' of E such that $F \subseteq F' \subseteq E$ and F' is a connected weight dominating edge set.

In example, 3.2 F is a maximal connected weight dominating edge set.

Theorem 3.12: A S- valued graph G^{S} will have a connected weight dominating edge set if and only if it is connected.

Proof

Let $C_i^{s} = (V_i, E_i, \sigma_i, \psi_i)$ be the connected components of G^{s} , i=1,2,...m where $\sigma_i = \sigma \setminus V_i, \psi_i = \psi \setminus E_i$.

Let F_i be the weight dominating edge set of C_i^{s} , whose elements has maximal S-value.

Since a weight dominating edge set F of G^S will have an edge from every component of G^S,

$$F = \bigcup_{i=1}^{m} F_{i}$$

Now, F is a connected weight dominating edge set $\Leftrightarrow \langle F^s \rangle$ is connected.

 \Leftrightarrow there exists a common edge $e_i \in F_i$ and $e_j \in F_j$, $i \neq j$ and i,j=1,2,...m.

$$\Leftrightarrow \langle G^s \rangle$$
 is connected.

www.wjert.org

Theorem 3.13: A S- valued graph G^{s} is a connected weight dominating edge set then $\gamma_{E}^{s}(G^{s}) \preceq \gamma_{CE}^{s}(G^{s}) \preceq 3\gamma_{E}^{s}(G^{s}) + 2(0,-1)$

Proof

By defn, Every connected weight dominating edge set is necessarily a weight dominating edge set.

$$\therefore \gamma_E^{\ s}(G^s) \preceq \gamma_{CE}^{\ s}(G^s)$$

Let F be a weight dominating edge set of G, such that $\gamma_E^{s}(G^s) = (|F|_s, |F|)$, let the induced subgraph $\langle F^s \rangle$ have m components, that $|F| \ge m$.

Claim

There exists C_i^s and C_j^s where $i \neq j$ be two components of F_i such that the length of a shortest path between C_i^s and C_j^s is at most 3 in G^S.

Assume that there exist a shortest path between C_i^{s} and C_j^{s} of length at least 4.

Let P be the shortest path between the components of induced subgraph $\langle F \rangle$.

That is, P is the shortest of all the shortest path between any two distinct components of $\langle F^s \rangle$.

Hence we can find an edge $(e, \psi(e))$ in the path P such that 'e' is at a distance of atleast 2 from the end points of P.

Since F is a weight dominating edge set then the edge 'e' must be at a distance of atmost 1 from a component.

Thus the edge 'e' lies on a path P' between the two components such that P' is shorter than P.

This contradicts the assumption that the length of the path P is atleast 4.

This proves that there exists two components C_i^s and C_j^s where $i \neq j$ of $\langle F^s \rangle$ such that the path between the two has at most 3.

Adding a edge in the path P to the weight dominating edge set F decreases the number of components of $\langle F^s \rangle$ by 1.

Continuing this procedure, we obtain only one component in $\langle F^s \rangle$, proving that \$F\$ is a weight dominating edge set.

Thus we can add atmost 2(m-1) edges to the weight dominating edge set F so as to form a connected weight dominating edge set.

Thus

$$\begin{split} \gamma_{CE}{}^{s}(G^{s}) &\preceq (|F|_{s}, |F|) + 2\left(\sum_{i=1}^{m-1} \psi(e_{i}), m-1\right) \\ &\preceq (|F|_{s}, |F|) + 2\left(\sum_{e \in F} \psi(e) + 0, (|F|-1)\right) \\ &\preceq (|F|_{s}, |F|) + 2((|F|_{s}, |F|) + (0, -1)) \\ &\preceq \gamma_{E}(G^{s}) + 2(\gamma_{E}{}^{s}(G^{s}) + (0, -1)) \\ &\preceq \gamma_{E}(G^{s}) + 2(0, -1) \end{split}$$

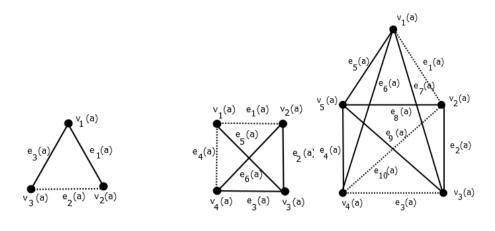
4. Connected edge domination number for Complete edge regular graphs

In this section, we study through some examples, how to find a connected edge domination number $\gamma_{CE}^{s}(G^{s})$ for a given complete edge regular graph G^{s} .

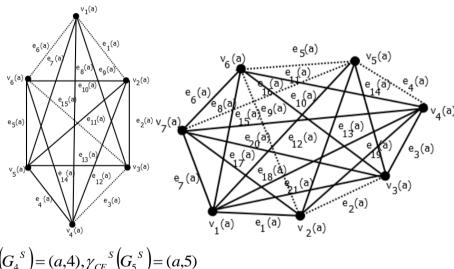
For any complete edge regular S- valued graph G^{S} on 'n' vertices, with weight 'a' for all edges.

$$\gamma_{CE}^{s}(G^{s}) = (a, n-2)$$

Let $G_1^{s}, G_2^{s}, G_3^{s}$ be three complete edge regular graphs with 3,4 and 5 vertices with weight 'a' for all edges respectively.



Here $\gamma_{CE}{}^{s}(G_{1}{}^{s}) = (a,1), \gamma_{CE}{}^{s}(G_{2}{}^{s}) = (a,2), \gamma_{CE}{}^{s}(G_{3}{}^{s}) = (a,3)$ Let $G_{4}{}^{s}, G_{5}{}^{s}$ be two complete edge regular graphs with 6 and 7 vertices with weight 'a' for all edges respectively.



Here $\gamma_{CE}^{\ \ s} \left(G_4^{\ \ s} \right) = (a,4), \gamma_{CE}^{\ \ s} \left(G_5^{\ \ s} \right) = (a,5)$

From the above study of examples, we can obtain the following algorithm for a complete edge regular graph on \$n\$ vertices with weight 'a' for all edges respectively.

- (1) Consider a complete edge regular graph K_n^{s} .
- (2) First find an arbitrary edge \$e \in E\$ of the complete edge regular K_n^{s} .
- (3) Find $N_s(e)$.
- (4) Take any one of the edge $e_1 \in N_s(e)$.
- (5) Now find $N_s(e_1)$.
- (6) Then take any one of the edge $e_2 \in N_s(e_1)$.

- (7) Continuing this, the process will terminate after a finite number of steps (i.e, if the collection of such edges dominates all the edges of the complete graph K_n^{S} .
- (8) This collection of edges form a minimum connected weight dominating set for a complete graph K_n^{S} .

REFERENCES

- Arumugam. S and Velammal. S: *Edge domination in Graphs*, Taiwanese Journal of Mathematics, 1998; 2(2): 173-179.
- 2. Berge C: Theory of Graphs and its Applications, Methuen, London, 1962.
- Gupta. R. P: Independence and Covering numbers of the line graphs and total graphs, Proof techniques in graph theory (ed. F.Harary), Academic press, New York, 1969; 61-62.
- 4. Jeyalakshmi.S and Chandramouleeswaran.M: *Vertex domination on S- valued Graphs*, IOSR Journal of Mathematics (IOSR-JM), 2016; 12(III): 08-12.
- Jeyalakshmi.S and Chandramouleeswaran.M: Connected weight dominating vertex set on S- valued Graphs, IJPAM, 2017; 112(5): 39-45.
- 6. Jonathan Golan, Semirings and Their Applications, Kluwer Academic Publishers, London.
- Kiruthiga Deepa.S, Mangala Lavanya.S and chandramouleeswaran.M: *Edge Domination* on S - valued graph, Journal of mathematical and computational Science, 2017; 7(1): 59-67 ISSN: 1927-5307.
- 8. JMitchell.S and Hedetniemi: *Edge domination in trees*, Congr. Numer, 1977; 19: 489-509.
- 9. Rajkumar.M., Jeyalakshmi.S and Chandramouleeswaran.M: *Semiring-valued Graphs* International Journal of Math. Sci. and Engg. Appls., 2015; 9(III): 141-152.
- 10. Sampath Kumar.E and Walikar.H.B: *Connected domination number of graph*, J.Math.Phy.Sci., 1979; 13(6): 607-61.
- 11. S. Velammal: Equality of Connected Edge Domination and Total Edge Domination in Graphs, International Journal of Enhanced Research in Science Technology and Engineering, ISSN: 2319-7463, May-2014; 3(5): 198-201.