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ABSTRACT 

This paper provides asymptotic estimates strong result for real zeros of 

random algebraic polynomial for the expected number of real zeros of 

a random algebraic polynomial of the form The strong result for the 

lower bound was obtained in the general case by Their lower bound  

was 
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n loglog   in our present result. 

This result is better than that of Dunnage since our constant is (1/√2). Times his constant and 

our error term is smaller. The proof is based on the convergence of an integral of which an 

asymptotic estimation is obtained. 1991 Mathematics subject classification (amer. Math. 

Soc.): 60 B 99. 

 

KEYWORDS AND PHRASES: Independent, identically distributed random variables, 

random algebraic polynomial, random algebraic equation, real roots, domain of attraction of 

the normal law, slowly varying function. 

 

INTRODUCTION 

We shall suppose that’s   v  real-valued random variables defined on the probability 

space ( ,m, P). The random events to be considered in the proof correspond to P-measurable 

subsets of this space. The probability that an event E occurs will be denoted by  EP . 
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Let nN  be the number of real roots of    


n

v

v

v xxf
0

,  . In Mishra, Nayak and 

Pattnayak, S.
[5]

 we have shown that for nNnn ,0  is at least  nn log  outside an exceptional 

set of measure at most  0log
0

nn
 where { n  } is any sequence tending to zero such that 

nn log2  tends to infinity as n tends to infinity. We have assumed that the v ’s have a 

common characteristics function exp  tC where 1 and C is a positive constant. 

 

In the present work we have proved the same result in the general case. We assume that 

the v ’s are any random variables with finite variance and third absolute moment. Our 

previous result holds in the case of a special characteristic function which has infinite 

variance  21  . 

 

The strong result for the lower bound was obtained in the general case by Samal and 

Mishra.
[4]

 Their lower bound was  
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Which is obtained by taking 
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n loglog   in our present result,  

 

Where nn tk ,  have the same meaning as in our present work. 

We claim that our strong result for the lower bound in the general case is the best estimation 

done so far. 

We shall use [x] to denote the greatest integer not exceeding x. 

 

2. THEOREM 1. Let    



n

v

v

v xxf
0

,  be a polynomial of degree n whose 

coefficients are independent random variables with expectation zero. Let 
2

v   be the variance 

and 
3

v   be the third absolute moment of   v .Take  n to be a sequence tending to zero 

such that nn log2  tends to infinity as n tends to infinity. Let v
nv

nt 



0
min  , v

nv
nk 




0
max  
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
0
max .Then there exists an integer 0n and a set  A of measure at most  
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0log
0

nn  

such that, for 0nn  and all  not belonging to  A , the equations   0, xf have at least 

nn log real roots, provided 
n

n
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p
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n
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lim  are finite. 

 

Preliminary lemmas. 

LEMMA 1. Suppose nXXX ,..., 21 are independent random variables with expectation zero, 

and that 2

vA  is the variance and 3

vB  is the third absolute moment of vX .  

Let  
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This result is due to Esseen
[2]

 and Berry
[1]

 

 

LEEMA 2 Let ,...,, 321    be a sequence of independent random variables identically 

distributed with   1iV   for all i. Then, for each  >0 
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Where D is a positive constant. This form of the strong law of large number is a consequence 

of the Hajek-Renyi inequality (see [3]). 

 

Proof of the theorem. Take 
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Where C1 is a constant to be chosen later. 

Let A and B be constants such that 0<B<1 and A >1. Let  
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for     ,,...2
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kkkm   where  
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the index  ranging from    114 14  m

nMm  to   3434  m

nMm  in
1

, from 0  to 

  1414  m

nMm  in 
2

, and from   134 34  m

nMm  to n  in 
3
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Let  

2
1

1

22

2

1




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
  v

mvm xV  . 

 

We define the events mE  as the sets of   for which   mm VU 22   and   1212   mm VU   and 

the events mF  as the sets of   for which   mm VU 22   and   1212   mm VU  . Obviously the 

sets of sv ' in  mU 2  and the sets of sv '  in  12 mU  are disjoint. Thus  mU 2  and 

 12 mU  are independent random variables. 

 

Let 

mm SS ,  be the sets of   in which respectively     mmmm VUVU   , . 

Hence    







  122122 mmmmmm SSSSFE . 

 

Since the two sets within the braces on the right hand side are disjoint and since  

 mU 2  and  12 mU  are independent random variables, 
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If 2  is the variance of  mU 2  then 
2

2

2 4 mV . 

 

So mV22 . Let  tF m2  be the distribution function of 
 



mU 2 . 

 

Hence         
2
1
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Here we shall apply Lemma 1. 
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Therefore 
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Similarly the other probabilities can be calculated. 
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It can be easily shown as in
[5]

 that 
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When n is large. 
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The least value of m is [k/2] +1.  Hence   nnm AtV 2  
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Tends to zero as n tends to infinity. 

Therefore  mm FEP  is greater than a quantity which tends to     
2
1

2
1 12    as n tends to 

infinity. 

 

Denote this last expression by  . 
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LEMMA  3 There is a set m of measure at most  
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Proceeding as in Lemma 2.2 of [5], we now get that the above probability does not exceed  
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Now , by using (2.1) and (2.5) and following the procedure of Lemma 2.3 of [5], we have 
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We have shown earlier that   

  

  0 mmm FEP . 

 

Let m  be a random variable such that it takes value 1 on mm FE   and zero elsewhere. In 

other words  

 

                                         1 with probability m          

                 m  

                                         0 with probability m1  

 

The m ’s are thus independent random variables with   mmE    and   12  mmmV  . 

 

Let m  be defined as follows: 

 

                                        0 if   mm VR 22   and   1212   mm VR   

      m  

                                        1 otherwise. 

Let     mmmm   . 

 

The conclusion of section 2.4 of [5] gives that the number of roots in  122 ,
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exceed 


k

mm

m

0

  
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2.4.   Now we appeal to Lemma 2. 
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Let  A  be the set of   for which 
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and so  

    
 







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




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0000 0 1

2
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2
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0
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m
mmk
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


 . 
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Again by Lemma 2, we have  

  
0

2

4

k

D
BP


  . 

Since  

      
 







k

mm

m
kmk

k

mm

mm
kmk

k

mm

mm
kmk mk

E
mk

E
mk

000000000 1

1
sup

1

1
sup

1

1
sup

010101



 

it follows that  

      CBA  . 

 

Hence calculation as in
[5]

 gives 

  
00 log

0
nk

AP
n








 . 

 

Thus if          

 

  














k

mm

m

k

mm

m E
mkmk

A

00
1

1

1

1

00

 

 

for all k such that 00 1 kmk  . 

So                  n
c

kN nn log
1

1

2
1

2
1 


   

for all k such that 00 1 kmk   or in other words, for all 0nn  . 

Now the theorem follows by taking  22

14
1

1  C . 
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