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ABSTRACT 

This paper provides asymptotic estimates strong result for real zeros of 

random algebraic polynomial for the expected number of real zeros of 

a random algebraic polynomial of the form The strong result for the 

lower bound was obtained in the general case by Their lower bound  

was 
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n loglog   in our present result. 

This result is better than that of Dunnage since our constant is (1/√2). Times his constant and 

our error term is smaller. The proof is based on the convergence of an integral of which an 

asymptotic estimation is obtained. 1991 Mathematics subject classification (amer. Math. 

Soc.): 60 B 99. 
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INTRODUCTION 

We shall suppose that’s   v  real-valued random variables defined on the probability 

space ( ,m, P). The random events to be considered in the proof correspond to P-measurable 

subsets of this space. The probability that an event E occurs will be denoted by  EP . 
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Let nN  be the number of real roots of    


n

v

v

v xxf
0

,  . In Mishra, Nayak and 

Pattnayak, S.
[5]

 we have shown that for nNnn ,0  is at least  nn log  outside an exceptional 

set of measure at most  0log
0

nn
 where { n  } is any sequence tending to zero such that 

nn log2  tends to infinity as n tends to infinity. We have assumed that the v ’s have a 

common characteristics function exp  tC where 1 and C is a positive constant. 

 

In the present work we have proved the same result in the general case. We assume that 

the v ’s are any random variables with finite variance and third absolute moment. Our 

previous result holds in the case of a special characteristic function which has infinite 

variance  21  . 

 

The strong result for the lower bound was obtained in the general case by Samal and 

Mishra.
[4]

 Their lower bound was  
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Where nn tk ,  have the same meaning as in our present work. 

We claim that our strong result for the lower bound in the general case is the best estimation 

done so far. 

We shall use [x] to denote the greatest integer not exceeding x. 

 

2. THEOREM 1. Let    



n

v

v

v xxf
0

,  be a polynomial of degree n whose 

coefficients are independent random variables with expectation zero. Let 
2

v   be the variance 

and 
3

v   be the third absolute moment of   v .Take  n to be a sequence tending to zero 

such that nn log2  tends to infinity as n tends to infinity. Let v
nv

nt 



0
min  , v
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nk 




0
max  

and v
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np 



0
max .Then there exists an integer 0n and a set  A of measure at most  
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0log
0

nn  

such that, for 0nn  and all  not belonging to  A , the equations   0, xf have at least 

nn log real roots, provided 
n

n

k

p
lim and 

n

n

t

k
lim  are finite. 

 

Preliminary lemmas. 

LEMMA 1. Suppose nXXX ,..., 21 are independent random variables with expectation zero, 

and that 2

vA  is the variance and 3

vB  is the third absolute moment of vX .  

Let  
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Also let  tFn  be the distribution function of 
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This result is due to Esseen
[2]

 and Berry
[1]

 

 

LEEMA 2 Let ,...,, 321    be a sequence of independent random variables identically 

distributed with   1iV   for all i. Then, for each  >0 
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Where D is a positive constant. This form of the strong law of large number is a consequence 

of the Hajek-Renyi inequality (see [3]). 

 

Proof of the theorem. Take 
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Where C1 is a constant to be chosen later. 

Let A and B be constants such that 0<B<1 and A >1. Let  
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We define  

                      xxxx  log  

Let k be the integer determined by  
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for     ,,...2
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kkkm   where  
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321

,  

 

the index  ranging from    114 14  m

nMm  to   3434  m

nMm  in
1

, from 0  to 

  1414  m

nMm  in 
2

, and from   134 34  m

nMm  to n  in 
3

. 
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Let  

2
1

1

22

2

1








  v

mvm xV  . 

 

We define the events mE  as the sets of   for which   mm VU 22   and   1212   mm VU   and 

the events mF  as the sets of   for which   mm VU 22   and   1212   mm VU  . Obviously the 

sets of sv ' in  mU 2  and the sets of sv '  in  12 mU  are disjoint. Thus  mU 2  and 

 12 mU  are independent random variables. 

 

Let 

mm SS ,  be the sets of   in which respectively     mmmm VUVU   , . 

Hence    







  122122 mmmmmm SSSSFE . 

 

Since the two sets within the braces on the right hand side are disjoint and since  

 mU 2  and  12 mU  are independent random variables, 
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If 2  is the variance of  mU 2  then 
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2 4 mV . 

 

So mV22 . Let  tF m2  be the distribution function of 
 



mU 2 . 
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Here we shall apply Lemma 1. 
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Therefore 
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Similarly the other probabilities can be calculated. 

Therefore   
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It can be easily shown as in
[5]

 that 
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When n is large. 
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Tends to zero as n tends to infinity. 

Therefore  mm FEP  is greater than a quantity which tends to     
2
1

2
1 12    as n tends to 

infinity. 

 

Denote this last expression by  . 
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LEMMA  3 There is a set m of measure at most  

  22

2

22
14exp

161
n

n

n

n

Mm
t

k

B

Ae

m














 

 

such that if m  and 0nn   then  

  mm VR   

 

for     .,...2
2

,1
2

kkkm   

  

Proof 

    .
32

v

mvm xR  







 

 

 

By Tchebycheff’s inequality, we have  

 

   









3

2

2

2

3

4

2

1 v

m

m

n
m

v

mv x
V

k
VxP  . 

 

Proceeding as in Lemma 2.2 of [5], we now get that the above probability does not exceed  
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Now , by using (2.1) and (2.5) and following the procedure of Lemma 2.3 of [5], we have 
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We have shown earlier that   

  

  0 mmm FEP . 

 

Let m  be a random variable such that it takes value 1 on mm FE   and zero elsewhere. In 

other words  
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The m ’s are thus independent random variables with   mmE    and   12  mmmV  . 

 

Let m  be defined as follows: 
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Let  A  be the set of   for which 
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Again by Lemma 2, we have  
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Now the theorem follows by taking  22
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