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Dr. P. K. Mishra This paper provides asymptotic estimates strong result for real zeros of
Associate Professor of random algebraic polynomial for the expected number of real zeros of
Mathematics, CET, BPUT, | 3 random algebraic polynomial of the form The strong result for the
BESR, ODISHA India. lower bound was obtained in the general case by Their lower bound

ulogn L . . _ K, .
was —————— Which is obtained by taking €. = #/ logy—-logn: in our present result.

k t,
log t—” logn

This result is better than that of Dunnage since our constant is (1/42). Times his constant and
our error term is smaller. The proof is based on the convergence of an integral of which an
asymptotic estimation is obtained. 1991 Mathematics subject classification (amer. Math.
Soc.): 60 B 99.

KEYWORDS AND PHRASES: Independent, identically distributed random variables,
random algebraic polynomial, random algebraic equation, real roots, domain of attraction of

the normal law, slowly varying function.

INTRODUCTION

We shall suppose that’s &, (a)) real-valued random variables defined on the probability

space (€2, m, P). The random events to be considered in the proof correspond to P-measurable

subsets of this space. The probability that an event E occurs will be denoted by P(E).
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Let N, be the number of real roots of f(x,®)> &, (@)x*. In Mishra, Nayak and

v=0

Pattnayak, S.” we have shown that for n>n,,N_ is at least ¢, logn outside an exceptional

set of measure at most % where {¢, } is any sequence tending to zero such that

0, log no)
g2logn tends to infinity as n tends to infinity. We have assumed that the&,’s have a

common characteristics function exp (— C|t|a)where a >1and C is a positive constant.

In the present work we have proved the same result in the general case. We assume that

the&,’s are any random variables with finite variance and third absolute moment. Our

previous result holds in the case of a special characteristic function which has infinite

variance (1< a < 2).

The strong result for the lower bound was obtained in the general case by Samal and

Mishra.” Their lower bound was

wlogn
k
Iog{ t” log n}

Which is obtained by taking &, = ,u/log{k” log n} in our present result,

t

n

Where k. ,t. have the same meaning as in our present work.

We claim that our strong result for the lower bound in the general case is the best estimation
done so far.

We shall use [x] to denote the greatest integer not exceeding X.

2. THEOREM 1. Let f(x,@)=>_ &, (w)x' be a polynomial of degree n whose
v=0

coefficients are independent random variables with expectation zero. Let o2 be the variance
and 7 be the third absolute moment of &,(w).Take {¢, }to be a sequence tending to zero

such that 7 logn tends to infinity as n tends to infinity. Let t, = min o, , k, = maxo,

O<v<n 0<v<n

and p, = maxz,.Then there exists an integer n,and a set A(w)of measure at most

o<v=n
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1/, log n,

such that, for n > n,and all  not belonging to A(w), the equations f(x,®)= 0 have at least

Py

. . k
g, log nreal roots, provided lim —-and lim — are finite.
" k t

n n

Preliminary lemmas.

LEMMA 1. Suppose X,, X,,...X, are independent random variables with expectation zero,

and that A? is the variance and B’ is the third absolute moment of X, .

Let

3

B, if A, =0

2

p=> A, A= 0 ifA =A, =max(1,)

1<v<n

Also let F,(t) be the distribution function of —z X, and
lun v=1

()= \/;_” jweXp(——U j
Then sup| F, (t) - 4(t)I< ZKA%J

This result is due to Esseen'?! and Berry!™

LEEMA 2 Let 7,,7,,75,... be a sequence of independent random variables identically

distributed with V (»,) <1 for all i. Then, for each & >0

p{fggl %Z:,{m —E@ )} = 8} <

T
gk,

Where D is a positive constant. This form of the strong law of large number is a consequence

of the Hajek-Renyi inequality (see [3]).

Proof of the theorem. Take S, :t—“exp ZL
k gy logn

n
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Where C; is a constant to be chosen later.
Let A and B be constants such that 0<B<1 and A >1. Let

k,) A
M., lzﬂﬁ(t—”j Ee]+1.

We define
x) = x>
Let k be the integer determined by
#(Bk +7)M T <n < $(8k +11)M 2K+,
(2.2)
Obviously

(2.3)
which implies

H

24 g logn<k <£2(g, logn).

Y C,

We consider f(x,0)=U, (0)+R, (@)
1 %
at the points Xy = {1——4}
gAm+1)M "
(2.4)

for m=[%J+1, [%J+ 2,..K, where

U (0)= s Ry(@)=( T+ Jafom:

2

the index v ranging from #(4m-1)M ™" +1 to ¢(4m+3)M ™2 in> , from 0 to
1

(4m-1M ™ in > and from ¢(4m+3)M ™2 +1tonin Y. .
2 3
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Let
) %
Vm=—[Zav2x§,"j .
2( 4

We define the events E, as the sets of o for which U, (w)>V,,, and U, ,(@)<-V,,., and

the events F, as the sets of & for which U, (@)<-V,, andU,,,(®)>V,,.,. Obviously the

2m+1

sets of &,'sin U, (@) and the sets of &'s in U, (@) are disjoint. Thus U,, (@) and

U,,.,(w) are independent random variables.

Let S;,S,. be the sets of & in which respectivelyU (0)>V, U, (0)<-V, .

)u(Sz‘m NS, )

2m+1

Hence E, v F, :( m M Sy,

2m 2m+1

Since the two sets within the braces on the right hand side are disjoint and since

U,, (@) and U,, ,,(@) are independent random variables,

P(Eq U Fy )= P(S30 P(Sans )+ PlS:n P(Snn).

If o2 is the variance of U, (@) then ¢? = 4V2 .

So o =2V,, . Let F,,(t) be the distribution function of UZm_(a))
(o2

Hence P{U,, (0)<-V,,}=PU,,(0)/c<-1}=F, (-1).
Here we shall apply Lemma 1.

Inour case B} =z x50, Al =olx2) .

3
So 2, :(%ijgm ,

And U, =0=2,, .
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Therefore
p, 1
F(t)-at)c =
sup| am(t)— ()] v
Hence

P(Sp0)= Fon (- 3)2 9 3)|Fn (- 3)—g3) > g 2)- P2 L

Similarly the other probabilities can be calculated.

Therefore
T o b o L
It can be easily shown as in® that
V2> %¢(4m +IM (B/A)e-1 (2.5)

When n is large.
So

2
V2> %(8m +1M " (B/A)e™

The least value of mis [k/2] +1. Hence V,, >t A,

where A, = casn — o, since M, >1 and8m+1> sk > u'e, logn.

Since Iim(p"/) is finite, it follows that

n—o

Po _Pa L

tr3V2m tr? An

Tends to zero as n tends to infinity.

Therefore P(E,, U F, )is greater than a quantity which tends to 2¢4(— )1 - ¢(%)} as n tends to

infinity.

Denote this last expression by & .
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LEMMA 3 There is a set Q,, of measure at most

2
1 16Ae( k
mZ—'BZ+T(t—nj exp{—(4m +1)2an}

n

such that if @ ¢ Q,, and n>n; then

R, (@) <V,

m

for m= I%J-i- 1 l%J-i- 2,..k.

Proof

1 2
>V }_ — X
2 V. 45
Proceeding as in Lemma 2.2 of [5], we now get that the above probability does not exceed

2
%(t—”} exp{—(4m +1)2Mn2}.

n

Again, by using the same inequality

Thus if @ ¢ Q) where

2
P(Q, )< Lﬁ@(‘:_nj exp{— (4m +1)° Mf}

m’gy B \t,

X

v 2v % 1
>mp, (ZO‘ ] < T .

we have

%
R, () <2V, + g, [zafx;v]

2

WwWw.wjert.org

300




Mishra et al. World Journal of Engineering Research and Technology

Now , by using (2.1) and (2.5) and following the procedure of Lemma 2.3 of [5], we have
b
mIB (ZUZ ZVJ ? N
We have shown earlier that
P(E, UF,)=4,>5>0.

Let 7., be a random variable such that it takes value 1 on E_ U F,, and zero elsewhere. In

other words

1 with probability &,

T
0 with probability 1-6,,

The 7, ’s are thus independent random variables with E(,,)=&,, and V(, )=, —52 <1.

Let p,, be defined as follows:

2m+1

0if |Ryp, (@) <V, and |Ry,,, (@) <V

Pm

1 otherwise.

Let 6, =1, —1nPn-

The conclusion of section 2.4 of [5] gives that the number of roots in (x2m0 , xzm) must

exceed Zk:ﬁm

Where m, = [2k]+1

2.4. Now we appeal to Lemma 2.

We have
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Let A(w) be the set of @ for which

k
sup z ){ g,

K-mp+12k, k-m, +1 my +1|:2

B(w) be the set of » for which

k

Z —E77m>( 3€

=My

sup
- m0+Lk0 k—m, +1 my +1/:

and C(w) be the set of  for which

sup Pm =5 8
k— m0+Lkok m, +lmZm:O "

E(pm ) = {q Zm‘ 2\/Zm )U qR2m+l| Z\/2m+l)}S I:)qR2m| 2\/Zm )+ I:)QRZm+1| 2\/2m+1

By Lemma 3,

1 16Ae(k, ) 1 16Ae(k Y
PQR2m|2V2m)<4m2ﬂnz T~ (t—j expl-(Bm+1 M2 < — +T(ﬁj expl-m?m?)
Similarly

2
PQR2m+1| ZV2m+1)< %"'%(t—n] exp(— mZMﬁ)

Hence by using (2.1), we have

E(p, )< mZLﬂerﬂ'(i:_nnJeXp(_ m2M§)< y"/(mzﬂnz)< " Im?,

Therefore

1 k
E I!/ 2
—k—mo+1m§0 (ow) < 4" 1M

and so

2 P{k m+12pm> 5}<2 >

2
k=g +1>ky k-my 112k, Mo
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Again by Lemma 2, we have

Since

sup ———
k-mp+1>k, K =My +1

Zk:{n ~E(, )){ + sup me

o, k—mg +12k, k—m, +1 m, +Z|.m =

0,5t} < s

g k-mp+1>k, K =M, +1

it follows that
A(a)) c B(a)) U C(a)) )

Hence calculation as in™ gives

lL[’ lLl”
PLA —_—<—
@) < k = g, logn,

Thus if
& A(a))

k

7 2.On Z (7n)—¢

k—m, +1 m, +1 .5, k m0+1m o
for all k such that k —m, +1>k,.

So N, >1(6-ek>1(5-2)"Le, logn

e
for all k such that k —m, +1 >k, or in other words, for alln >n, .

Now the theorem follows by taking C, = 2 z2 (5 — &) .
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