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ABSTRACT 

The asymptotic estimates of the expected number of real zeros of the 

polynomial  ngggT ncos......2coscos)( 21   where 

gj(j=1,2,…..n) is a sequence of independent normally distributed 

random variables is such a number. To achieve the result we first  

present a general formula for the covariance of the number of real zeros of any normal 

process, e(t), occurring in any two disjoint intervals. A formula for the variance of the 

number of real zeros of e(t) follows from this result.  
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1. 1. INTRODUCTION:- 

Let (1.1),cos)(),()(
1

0 



n

j

j jgTT   where )(),.......(),( 21  nggg  is a 

sequence of independent random variables defined on a probability space Pr),,(  , each 

normally distributed with mean zero and variance one. Much has been written concerning 

)2,0( KN , the number of crossings of a fixed level K by T(θ), in the interval (0,2 ) . 

From the work of Dunnage (2) we know that, for all sufficiently large n, the mathematical 
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expectation of )2,0()2,0(0  NN   is asymptotic to 3/2n . In
[3]

 and
[5]

 we show that 

this asymptotic number of crossings remains invariant for any 

.n as 0/nKsuch that  2  nKK However, less information is known about the 

variance of )2,0( N . The only attempt so far is ….where an (fairly large) upper bound is 

obtained. Indeed this could be justified since the problem with finding the variance consists 

of different levels of difficulties ……with finding the mean. The degree of difficulty with this 

challenging problem is reflected in the delicate work of Maslova
[8]

 and Sambandham et al.,
[7]

 

with above obtained the variance of N for the case of random algebraic polynomial 

;0
n
j

j
jxg  a case involving analysis that is usually easier to handle. Qualls

[9]
 also studied 

the variance of the number of real roots of a random trigonometric polynomial. However, he 

studied a different type of polynomial  jbja j
n
j j sincos0   which has the property of 

being stationary and for which a special theorem has been developed by Cramer and 

Leadbetter.
[1]

 

 

Here we look at the random trigonometric polynomial (1.1) as a non-stationary random 

process. First we are seeking to generalize Cramer and Leadbetter’s
[1]

 works concerning 

fractional moments which are mainly for the stationary case. To evaluate the variance 

specially, and some other applications generally it is important to consider the covariance of 

the number of real zeros of )(t  in any two disjoint intervals. To this end, let )(t  be a 

(non-stationary) real valued separable normal process possessing continuous sample paths, 

with probability one, such that for any 21    the joint normal process 

)('  )('),(),( 2121  and  is non singular. Let (a,b) and (c,d) be any disjoint 

intervals on which )(t  is defined. The following theorem and the formula for the mean 

number of zero crossings [1, page 85] obtain the covariance of N(a,b) and N(c,d). 

 

Theorem 1. For any two disjoint intervals, (a,b) and (c,d) on which the process )(' 1  is 

defined, we have  

      









d

c

b

a

ddxdydyxpxydcNbaNE 2121 ,,0,0),(),(   
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where for ),,,(.p , c and 212121 yxxxdba    denotes the four dimensional 

density function of ).('),('),(),( 2121    

 

A modification of the proof of Theorem 1 will yield the following theorem which, in reality, 

is only a corollary of Theorem 1.  

 

Theorem 2: For ),,,(.p 2121 yxxx  defined as in Theorem 1 we have  

    









d

c

b

a

ddxdydyxpxybaEN 2121
2 ,,0,0),(   

 

By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be able to find 

an upper limit for the variance of its number of zeros. This becomes possible by using a 

surprising and nontrivial result due to Wilkins
[12]

 which reduces the error term involved for 

)2,0( EN  to 0(1). We conclude by proving the following. 

 

Theorem 3. If the coefficients gj(w), j=1,2,…..n in (1.1) be a sequence of independent 

random variables defined on probability space Pr),,(  , each normally distributed with 

mean zero and variance one, then for all sufficiently large n the variance of the number of 

real zeros of T(θ) satisfies  

  )(),0(var 2/3nON   

 

2. The Covariance of the Number of Crossings 

To obtain the result for the covariance, we shall carry through the analysis for the number of 

upcrossings, Nu. Indeed, the analysis for the number of down crossings would be similar and 

therefore, the result for the total number of crossings will follow. In order to find 

 ),(),( dcNbaNE uu  we require to refine and extend the proof presented by Cramer and 

Leadbetter [1, page 205). However, our proof follow their method and in the following, we 

highlight the generalization required to obtain our result. Let akaba m
k  2)(  and 

similarly  2)( clcdb m
j  

for 1-20,1,2,....lk, m and we define the random 

variable Xk,m and Xlm as  
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otherwise

aaif
mXk

kk

0

)(0)(1
,

1
 

And 

 (2.1)                   
0

)(0)(1 1



 




otherwise

bbif
Xlm

ll 
 

In the following we show that  

  









12

0

12

0

,,,

m m

l k
m mXlmXkY  

 

Tends to m as ),(),( dcNbaN uu  with probability one. See also {1,page 287}. We 

first note that  ),(),( dcNbaNE uu  is finite and therefore  ),(),( dcNbaN uu  is 

finite with probability one. Let v and r be the number of upcrossings of )(t in (a,b) and 

(c,d), respectively, and write t1,t2,…..tv and t’1, t’2…t’r for the points of upcrossings of zero 

by )(t , there can be found two sub intervals for each Is,m and Js’m such that )(t  in one is 

strictly positive and in the other, it is strictly negative. Thus it is apparent that Ym will count 

each of tsts’. That is, vrY m , for all sufficiently large m. On the other hand, if 

0)()( and 0)()( 11   ttkk bbba  then )(t  must have a zero in 

),( and ),( 11  llkk bbaa  and hence vrY m  and hence ),(),( dcNbaNY uum  as 

m , with probability one. Now from (2.1) we can see at once that  

(2.2)                          )1,,Pr(

)1,,Pr()(

12

0

12

0

12

0

12

0

 

 





















m m

m m

l k
lk

l k
lkm

mXmX

mmXXYE

 

 

We write k for the random variable     kk
m aa  12  and similarly 1'  for 

    kk
m bb  12 , then we have  

)1,,Pr(  mXmX lk  

= )2)(0 and ,2)(0Pr( l
m

lk
m

k ba     
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=    


 

0 0

2

0

2

0

2121 (2.3)                   ),,,(,,

xm ym

dxdydzdzyxzzlkPm  

 

For k,l, (z1,z2,x,y) denotes the four dimensional normal density function for k  and k' . A 

simple calculation shows see
[6]

 or [1 page 207], that if 1  and 2 are the fixed interval (a,b) 

and (c,d), respectively and km and lm are such that 
11 


mm kk aa  and 

12 


mm ll bb  for each m, then all members of the covariance matrix of pm,k,l (z1,z2,x,y) 

will tend to the corresponding members of the covariance matrix of 2,
1
p  (z1,z2,x,y). 

This co-variance matrix is, indeed, nonsingular. Now let 
21

2r and 2 z
m

z
mt  then 

from (2.2) and (2.3) we have  

    












12

0 0 0 0 0

12

0

2     ),,22(,,2)(

m m

l

x y
mm

k

m
m dtdrdxdyyxrtlkPmYE  

     



b

a

d

c

mm
x y

m ddtdrdxdydyxrt (2.4)      ),,22(,,

0 0

21

0 0

21    

in which 21,, m  ),,,( yxrt ),,,(,, yxrtlkPm  for 11  kk aa   and 

12  ll bb   . It follows, similar to [1, page 206], that m  

),,0,0(),,22(,, 2121 yxpyxrt mm
m   

 which together with dominated 

convergence proves Theorem 1.  

 

3. The Variance of the Number of Real Zeros 

It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can 

be expressed much more simply. The proof is similar to that established above for 

covariance, therefore we only point out the generalization required to obtain the result. To 

avoid degeneration of the joint normal density. ),,,(, 2121 yxzzp  , we should omit those 

zeros in the squares of side 2
-m

 obtained from equal points in the axes (and therefore to 

evaluate EN(N-1)). To this and for any g=(g1,g2) lying in the unit square and c>0, let Ame 

denote the set of all points g in the unit square that for all s belonging to the squares of side 2
-
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m
 set containing g we have  21 ss . Let m  denote the characteristic function of the 

set m . Finally, similar to the covariance case, let 

                   
0

)(0)(1 1
,



 




otherwise

aaif
X

kk
mk


  

for k=0,1,2,….2
m
-1, where .2)( akaba m

k  
 Now let 

 









12

0

12

),0(
,, (3.1)               )2,2(

m m

k kll

mm
mmlmkm lkXXM    

 

Similar to [1,page 205] we show that Mme is a non decreasing function of m for any fixed e. It 

is obvious that Mme is a non decreasing function of e for fixed to m, and then by two 

applications of monotone convergence it would be justified to change the order of limits in 

.limlimlim 0  mm 
 To this end, we note that each term of the sums of 

mM corresponds to a square of side 2
-m

. For fixed 0 , the typical term is one if both of 

the followings statements are satisfied; (i) every point s=(s1,s2) in the square is such that 

 21 ss  and (ii) Xk,m=Xl,m=1. When m is increase by one unit, the square is divided 

into four subsquares, in each of which property (i) still holds. Correspondingly, the typical 

term of sum is divided into four terms, formed by replacing m by m+1 and each k or l by 2k 

and 2l, for ak+1 and al+1. Since Xk,m=Xl,m=1 we must, with probability one, have at least one of 

these four terms equal one. Hence Mme is a non decreasing function of m.  

 

In the following, we show that ).1(limlim 0  uum NNs
 

 

We first note that if the typical term in the sum of mM  is nonzero it follows that 

 21 ss , since it is impossible to have )(0)( and )(0)( 211   kkkk aaaa  . 

Therefore, the characteristic function appearing in the formula for mM  in (3.1) is one and 

hence 

 







 

12

0

12

),0(
,,0 (3.2)               lim

m m

k kll
mlmkm XXM 
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(3.2) is clearly in the form of Ym defined in Section 2 except that the summations in (3.2) 

cover all the k and l such that lk  . Hence from (3.2), we can write 

)1(limlim 0  uumm NNM   

 

Therefore the same pattern as for the covariance case yields 

  1),(),( baNbaNE uu  

  




0 0

212

)(
0 (3.3)      ),,0,0(,,

1lim 


 ddxdydyxpxy

D

 

 

where )(D  denotes the domain in the two dimensional space with coordinates 21,  such 

that ba  21,  and   21 . Now notice that for 021   the 

),,0,0(. 21 yxp   degenerates to just ),0( xp , the two dimensional joint density 

function of )( .and )('  . Hence from (3.3) we have  

  1),(),( baNbaNE uu =

    
 b

a

b

a

b

a

dxdxpxddxdydyxpxy

0 00

21      ),0(,-),,0,0(,,
21

    

Now since  
b

a

dxdxpx

0

),0(,   is ),( baENu  the result of Theorem 2 follows.  

 

4. Random Trigonometric Polynomial 

To evaluate the variance of the number of real roots of (1.1) in the interval ( ),0  we use 

Theorem 2 to consider the interval  ','   . The variance for the intervals and 

 ','    are obtained using an application of Jenson’s theorem [10, page 332] or [11, 

page 125]. We chose 
2/1'  n  which as we will see later, yields the smallest possible 

error term. First, for any   and 21  in  ','    such that   21 where 

2/1'  n , we evaluate the joint density function of the random variable 

)(' and )('),(),( 2121  TTTT . Since for any   we have  
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n

j

nj
1

2/1)2/sin(/)2/1(sincos   

and also since for the above choice of )'(2 , and 2121    we can show  

 

   

   

(4.1)                           )'/1()/1(

4/
22/) (sin/) )(2/1(sin

2/) -(sin/) - )(2/1(sin

cosj cos)T( ),(cov),(

2121

2121

1
212121









OO

n

n

jTA
n

j

















 


 

 

Similarly, we can obtain the following two estimates 

 

  (4.2)               )''//(,)/(

cosj sin)T( ),(cov),(

22
211

1
212121







 





nnOA

jjTC
n

j  

and 

 

  (4.3)    )''////(,)/(

sinj sin)T( ),(cov),(

32222
212

1
212121







 


nnnnOC

jjTB
n

j  

 

Also in the lemma in [3,page 1405] we obtain 

)''/'/(6/

))0('var(),'(2/))0(var(

3223

1
1

1













nnOn

TOnT
  

and  

  )''/()()(cov 2
21

  nOTT  

 

These together with (4.1)-(4.3) give the covariance matrix for the joint density function 

)('  )('),(),( 2121  TandTTT as 

(4.4)   

)'/2(6/3)2,1()2,2()1,2(

)2,1()'/2(6/3)2,1()1,1(

)2,2()2,1()1'(2/)2,1(

)1,2()1,1()2,1()1'(2/







































nOnBCC

BnOnCC

CCOnA

CCAOn

 



Mishra et al.                                   World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

312 

This covariance matrix for all   2,10,4n  such that 21   is positive definite. Hence 

0  and, if ij
is cofactor of the (ij)th element of  , then 

  
34 43

 and 
44

0,
33

0 . From [1,page 26] we have 

),,0,0(. 21 yxp   

=    (4.5)    2/
433444

2
33

2exp
2/11)24(





 

  xyyx  

Now let q=     .
2/1

44
/s and 

2/1

33
/ yx      Then from (4.5) we can write  

dydxyxpyx  ),,0,0(2.1,  








 

  (4.6)       2/)222(exp,
44

11
33

1)24( dsdqpqssqsq 










   

 

where     2/1

44332/
4334    and 120  p . The value of the integral 

in (4.6) can be obtained by a similar method to [1, page 211]. Let 

squ 2/1)21( vand 2/1)21(    then we have  

         2/)2(exp
0 0

22 dsdqpqssqI  
 

   

  dvdupuvvu  

0 0

)21(2/)222(exp1-)2-(1  


   

 

(4.7)                    cscarccos1/2-)2-(1

0

2/1)21(1)(2/11/2-)2-(1









  dxx
 

 

where  cos  . Use has been made of the fact that (see for example, [1, page 27] 

  dvdupuvvu  

0 0

)21(2/)222(exp 
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0

2/1)21(1)(2/11/2-)2-(1 dxx  

 

Therefore from (4.7) by differentiation we can obtain  

 

(4.8)                       ).cot-(12csc)-(dI)/(d

   

0

2/)222(exp

 

 



  dsdqpqssqqs
 

(4.8) we can easily show that  

 

   cot12csc

   

0

2/)222(exp



 



  dsdqpqssqqs
 

 

Which together with (4.8) evaluates the integral in (4.6) as  

 

   (4.9)                                                  cot2/12csc4

   2/)222(exp

 









  dsdqpqssqqs
 

Now from (4.4) we can show 

(4.10)                             
44 33

)'/4(24/5  nOn  

and  

(4.11)                             
34 43

)'/4(  nO  

 

Also from (4.10) and (4.11) and with the above choice from (4.9), we can obtain 

        n as 0)'/1(
2/1

34 33
2/

34 33
 nO  

 

Therefore 2/  for all sufficiently large n and hence from (4.9), we can see  

 

(4.12)                                               )'/1(4

   2/)222(exp

nO

dsdqpqssqqs
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Also from (4.1)-(4.4) we can write  

 2)}1'(6/3{2)}1'(2/{   OnOn  

 

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptotically 

independent of 2 and 1   and since by the definition of D(e), the area of the integration is 

)'(22)'2(2)'2(   O  we have  

   )''/(3/21)','()','(  nnnOnNNE   (4.13) 

 

We now denote the mathematical expectation of N
2
 in the interval (0,e). Similar to

[2]
 or [3, 

page 1407] we apply Jensen’s theorem on a random integral function of the complex variable 

z,  

 




n

j

jzwjgwzT

1

cos)(),(  

Let N(r) denote the number of real zeros of T(z,w) in z<r. For any integer j from [3, page 

1408] we have  

  2/'3)2/'22/exp(2/')/2('3)'(Pr jjnjjnjnN    (4.14) 

 

Let  '3' nn   be the smallest integer greater than or equal to '3 n  then since nN 2)'(  is a 

non negative integer, from (4.14) and by dominated convergence, for efficiently large n we 

have  






0

))'(Pr()12()'(2

j

jNjEN    

(4.15)                                                           )2'2(

1

)'('2/)211'2(

'

1

3)1'2(

1

)')'(Pr()21'2(

'0

))'(Pr()12(







nO

n

j

nOnjjn

n

j

n

n

j

jnNjn

nj

jNj
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The interval ),'(    can also be treated in exactly the same way to give the same result. 

Now we can use delicate result due to Wilkins
[12]

 which states that 

).1(2/),0( OnEN  From this and (4.13), (4.15) and since ,'   we obtain 

     

 
(4.16)                                            )'2'/2'2(

2
)1(3/)'2'/2'2(3/2

2),0(2),'()','()',0(),0(var







nnnO

OnnnnOn

ENNNNEN







  

 

Use has been made of the fact that ),'()',0(~)','(  nOENEN   see [5,page 556] and 

therefore )',2())',0(()]','()',0([  nONnONNE  and also from (4.15), 

).2',2(),'(2~)',0(2  nOENEN  Finally from (4.16) and since 2/1'  n , we 

have the proof of Theorem 3.  
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