ON THE BINARY QUADRATIC EQUATION $a x^{2}-(a+1) y^{2}=a$

A. Vijayasankar ${ }^{1}$, M. A. Gopalan ${ }^{2}$ and V. Krithika** ${ }^{*}$
${ }^{1}$ Assistant Professor, Department of Mathematics, National College, Trichy-620001, Tamilnadu, India.
${ }^{2}$ Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.
${ }^{3}$ Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India.

Article Received on 08/08/2017
Article Revised on 28/08/2017
Article Accepted on 18/09/2017
*Corresponding Author
V. Krithika

Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India.

ABSTRACT

The binary quadratic equation $a x^{2}-(a+1) y^{2}=a$ represents a hyperbola. In this paper we obtain a sequence of its integral solutions and present a few interesting relations among them.

KEYWORDS: Binary quadratic, Hyperbola, Parabola, Integral solutions, Pell equation. 2010 Mathematics subject classification: 11D09.

INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non-homogeneous) are rich in variety. ${ }^{[1-5]} \mathrm{In}^{[6-12]}$ the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of another interesting binary quadratic equation given by $a x^{2}-(a+1) y^{2}=a$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited.

METHOD OF ANALYSIS

The Diophantine equation representing the binary quadratic equation to be solved for its nonzero distinct integral solution is

$$
\begin{equation*}
a x^{2}-(a+1) y^{2}=a \tag{1}
\end{equation*}
$$

Substituting the linear transformations

$$
\begin{equation*}
x=X \pm(a+1) T, \quad y=X \pm a T \tag{2}
\end{equation*}
$$

in (1), we have

$$
\begin{equation*}
X^{2}=a(a+1) T^{2}-a \tag{3}
\end{equation*}
$$

The least positive integer solution is

$$
\begin{equation*}
T_{0}=1, X_{0}=a \tag{4}
\end{equation*}
$$

Now, to find the other solutions of (3), consider the pellian equation

$$
\begin{equation*}
X^{2}=a(a+1) T^{2}+1 \tag{5}
\end{equation*}
$$

whose fundamental solution is

$$
\left(\tilde{T}_{0}, \tilde{X}_{0}\right)=(2,2 a+1)
$$

The other solutions of (6) can be derived from the relations

$$
\begin{aligned}
& \tilde{X}_{n}=\frac{f_{n}}{2} \\
& \tilde{T}_{n}=\frac{g_{n}}{2 \sqrt{a^{2}+a}}
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{n}=\left(2 a+1+2 \sqrt{a^{2}+a}\right)^{n+1}+\left(2 a+1-2 \sqrt{a^{2}+a}\right)^{n+1} \\
& g_{n}=\left(2 a+1+2 \sqrt{a^{2}+a}\right)^{n+1}-\left(2 a+1-2 \sqrt{a^{2}+a}\right)^{n+1}
\end{aligned}
$$

Applying the Brahmagupta lemma between $\left(T_{0}, X_{0}\right)$ and $\left(\tilde{T}_{n}, \tilde{X}_{n}\right)$, the other solutions of (3) can be obtained from the relation

$$
\begin{align*}
& T_{n+1}=\frac{1}{2} f_{n}+\frac{a}{2 \sqrt{a^{2}+a}} g_{n} \\
& X_{n+1}=\frac{a}{2} f_{n}+\frac{\sqrt{a^{2}+a}}{2} g_{n} \tag{6}
\end{align*}
$$

By substituting equation (6) in (2), the non-zero distinct integer solutions of (1) are obtained as follows

$$
\begin{aligned}
& x_{n+1}=\frac{-1}{2} f_{n},\left[\frac{2 a+1}{2} f_{n}+\sqrt{a^{2}+a} g_{n}\right] \\
& y_{n+1}=\frac{\sqrt{a^{2}+a}}{2(a+1)} g_{n},\left[a f_{n}+\frac{(2 a+1) \sqrt{a^{2}+a}}{2(a+1)} g_{n}\right]
\end{aligned}
$$

The recurrence relations for x_{n+1}, y_{n+1} are respectively

$$
\begin{aligned}
& x_{n+3}-(4 a+2) x_{n+2}+x_{n+1}=0 \\
& y_{n+3}-(4 a+2) y_{n+2}+y_{n+1}=0 .
\end{aligned}
$$

From the above solutions we obtain some interesting relations, which are presented below:

1. Relations among the solutions:

* $2 x_{n+3}=(8 a+4) x_{n+2}-2 x_{n+1}$
* $2(2 a+1) x_{n+2}=x_{n+1}+2 x_{n+3}$
* $x_{n+2}=x_{n+1}-2(a+1) y_{n+2}$
* $2(a+1) y_{n+2}=x_{n+1}-(2 a+1) x_{n+2}$
* $\left(8 a^{2}+8 a+1\right) x_{n+2}=(2 a+1) x_{n+1}-2(a+1) y_{n+3}$
* $(2 a+1) y_{n+1}=y_{n+2}+2 a x_{n+1}$
* $4(a+1)(2 a+1) y_{n+1}=\left(8 a^{2}+8 a+1\right) x_{n+1}-2 x_{n+3}$
* $\left(8 a^{2}+8 a+1\right) y_{n+2}=2 a x_{n+1}+(2 a+1) y_{n+3}$
* $4(a+1) y_{n+2}=x_{n+1}-2 x_{n+3}$
* $2(a+1) y_{n+3}=(2 a+1) x_{n+1}-\left(8 a^{2}+8 a+1\right) x_{n+2}$
* $2(a+1) y_{n+1}=(2 a+1) x_{n+1}-x_{n+2}$
* $x_{n+3}=x_{n+1}-4(a+1) y_{n+2}$
* $4(a+1)(2 a+1) y_{n+3}=x_{n+1}-2\left(8 a^{2}+8 a+1\right) x_{n+3}$
* $\left(8 a^{2}+8 a+1\right) y_{n+1}=4 a(2 a+1) x_{n+1}+y_{n+3}$
* $(2 a+1) y_{n+3}=\left(8 a^{2}+8 a+1\right) y_{n+2}-2 a x_{n+1}$
* $\left(8 a^{2}+8 a+1\right) x_{n+3}=x_{n+1}-4(a+1)(2 a+1) y_{n+3}$
* $2 a x_{n+1}=(2 a+1) y_{n+1}-y_{n+2}$
* $x_{n+1}=2(2 a+1) x_{n+2}-x_{n+3}$
* $2 a x_{n+2}=y_{n+1}-(2 a+1) y_{n+2}$
* $2\left(4 a^{2}+5 a+1\right)\left(8 a^{2}+8 a+1\right) y_{n+1}=\left(8 a^{2}+8 a+1\right) x_{n+2}-(2 a+1) x_{n+3}$
* $2 y_{n+3}=4(2 a+1) y_{n+2}-2 y_{n+1}$
* $2 a x_{n+3}=(2 a+1) y_{n+1}-\left(8 a^{2}+8 a+1\right) y_{n+2}$
\& $\left(8 a^{2}+8 a+1\right)\left\{\left(8 a^{2}+10 a+2\right) y_{n+2}+\left(64 a^{4}+112 a^{3}+56 a^{2}+6 a-1\right) x_{n+2}\right\}$

$$
=\left(128 a^{5}+288 a^{4}+208 a^{3}+48 a^{2}-1\right) x_{n+3}
$$

OBSERVATIONS

I. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented below.

Hyperbolas

$>4\left(a^{2}+a\right)\left[x_{n+1}^{2}-1\right]-\left[(2 a+1) x_{n+1}-x_{n+2}\right]^{2}=0$.
$>16(2 a+1)^{2}\left(a^{2}+a\right)\left[x_{n+1}^{2}-1\right]-\left[\left(8 a^{2}+8 a+1\right) x_{n+1}-2 x_{n+3}\right]^{2}=0$.
$>4(2 a+1)^{2}\left(a^{2}+a\right)\left[x_{n+1}^{2}-1\right]-(a+1)^{2}\left[2 y_{n+2}+4 a x_{n+1}\right]^{2}=0$.
$>4\left(8 a^{2}+8 a+1\right)^{2}\left(a^{2}+a\right)\left[x_{n+1}^{2}-1\right]-(a+1)^{2}\left[8 a(2 a+1) x_{n+1}+2 y_{n+3}\right]^{2}=0$.
$>(4 a+1)^{2}\left(a^{2}+a\right)\left(8 a^{2}+8 a+1\right)^{2}\left\{\left[2 x_{n+3}-4(2 a+1) x_{n+2}\right]^{2}-2^{2}\right\}-$
$\left[\left(8 a^{2}+8 a+1\right) x_{n+2}-(2 a+1) x_{n+3}\right]^{2}=0$.
$>\left[y_{n+2}-(2 a+1) y_{n+1}\right]^{2}-4 a(a+1) y_{n+1}^{2}=4 a^{2}$.
$>\left[y_{n+3}-\left(8 a^{2}+8 a+1\right) y_{n+1}\right]^{2}-16 a(2 a+1)\left[(a+1) y_{n+1}^{2}+a\right]=0$.
II. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented below.

Parabolas

$>2 a(a+1)\left[x_{2 n+2}+1\right]+\left[(2 a+1) x_{n+1}-x_{n+2}\right]=0$.
$>\left[y_{2 n+3}-(2 a+1) y_{2 n+2}+2 a\right]-4(a+1) y_{n+1}^{2}=4 a$.
$>8 a(a+1)(2 a+1)^{2}\left[1+x_{2 n+2}\right]+\left[\left(8 a^{2}+8 a+1\right) x_{n+1}-2 x_{n+3}\right]^{2}=0$.
$>2 a(a+1)(4 a+1)^{2}\left(8 a^{2}+8 a+1\right)^{2}\left[x_{2 n+4}-2(2 a+1) x_{2 n+3}-1\right]-\left[\left(8 a^{2}+8 a+1\right) x_{n+2}-(2 a+1) x_{n+3}\right]^{2}=0$.
$2 a(a+1)\left(8 a^{2}+8 a+1\right)^{2}\left[1+x_{2 n+2}\right]+(a+1)^{2}\left[8 a(2 a+1) x_{n+1}+2 y_{n+3}\right]^{2}=0$.
$>2 a(a+1)(2 a+1)^{2}\left[1+x_{2 n+2}\right]+(a+1)^{2}\left[2 y_{n+2}+4 a x_{n+1}\right]^{2}=0$.

Generation of Solution

If $x_{1}=x_{0}+h$ and $y_{1}=h-y_{0}$ is any solution of (1) and we have the following x_{0}, y_{0} also satisfies (1).
Let $x_{1}=x_{0}+h, y_{1}=h-y_{0}$ and $h \neq 0$
Substituting (7) in (1) and performing a few calculations, we obtain

$$
h=2 a x_{0}+2(a+1) y_{0}
$$

and then

$$
\begin{aligned}
& x_{1}=(2 a+1) x_{0}+(2 a+2) y_{0} \\
& y_{1}=2 a x_{0}+(2 a+1) y_{0}
\end{aligned}
$$

which is written in the form of matrix as

$$
\binom{x_{1}}{y_{1}}=M\binom{x_{0}}{y_{0}}
$$

where $M=\left(\begin{array}{cc}2 a+1 & 2 a+2 \\ 2 a & 2 a+1\end{array}\right)$
replacing the above process, the general solution $\left(x_{n}, y_{n}\right)$ to (1) is given by

$$
\binom{x_{n}}{y_{n}}=M^{n}\binom{x_{0}}{y_{0}}
$$

The eigen values of Mare $\alpha=(2 a+1)+2 \sqrt{a^{2}+a}$ and $\beta=(2 a+1)-2 \sqrt{a^{2}+a}$, it is well known that

$$
M^{n}=\frac{\alpha^{n}}{\alpha-\beta}(M-\beta I)+\frac{\beta^{n}}{\alpha-\beta}(M-\alpha I)
$$

Using the above formula, we have

$$
\begin{aligned}
& M^{n}=\left(\begin{array}{cc}
\frac{\alpha^{n}+\beta^{n}}{2} & \frac{(a+1)}{2 \sqrt{a^{2}+a}}\left(\alpha^{n}-\beta^{n}\right) \\
\frac{a}{2 \sqrt{a^{2}+a}}\left(\alpha^{n}-\beta^{n}\right) & \frac{\alpha^{n}+\beta^{n}}{2}
\end{array}\right) \\
& \binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
Y_{n} & (a+1) X_{n} \\
a X_{n} & Y_{n}
\end{array}\right)\binom{x_{0}}{y_{0}}
\end{aligned}
$$

where

$$
\begin{array}{ll}
Y_{n}=\frac{1}{2} f_{n} & , f_{n}=\alpha^{n}+\beta^{n} \\
X_{n}=\frac{1}{2 \sqrt{a^{2}+a}} g_{n}, g_{n}=\alpha^{n}-\beta^{n}
\end{array}
$$

Remarkable observations

Let (α, β, γ) be the sides of the Pythagorean triangle

$$
\alpha=2 p q, \beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}, p>q>0
$$

where p and q are the generators of the Pythagorean triangle.
Let A and P be its area and perimeter respectively.

Write p and q as $p=x_{n}+y_{n}$ and $q=y_{n}$, where $\left(x_{n}, y_{n}\right)$ is the solution of (1).
Then the corresponding Pythagorean triangle is such that
$>\gamma(a-1)-2 a \alpha+(a+1) \beta=2 a$.
$>a P^{2}+P[(a+1)(\beta-\gamma)-2 a(\alpha+1)]=4 a A$.

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES

1. Mollin RA, Anitha srinivasan. A note on the Negative pell Equation, International Journal of Algebra, 2010; 4(19): 919-922.
2. K. Meena, M.A. Gopalan, R. Karthika. (December) "On the Negative Pell Equation $y^{2}=10 x^{2}-6$ ", International Journal of Multidisciplinary Research and Development, 2015; 2(12): 390-392.
3. M.A. Gopalan, S.Vidhyalakshmi, V. Pandichelvi, P. Sivakamasundari, C. Priyadharsini. "On the Negative Pell Equation $y^{2}=45 x^{2}-11 "$, International Journal of pure Mathematical Science, 2016; 16: 30-36.
4. K. Meena, S. Vidhyalakshmi, A. Rukmani. (December) "On the Negative Pell Equation $y^{2}=31 x^{2}-6 "$, Universe of Emerging Technologies and Science,; volume II, Issue XII: 1-4, 2015.
5. Whitford EE. Some Solutions of the Pellian Equations $x^{2}-A y^{2}= \pm 4$ JSTOR: Annals of Mathematics, Second Series, 1913-1914; 1: 157-160.
6. S. Ahmet Tekcan. Betw Gezer and Osman Bizim, "On the Integer Solutions of the Pell Equation $x^{2}-d y^{2}=2^{t} ״$, World Academy of Science, Engineering and Technology, 2007; 1: 522-526.
7. Ahmet Tekcan. The Pell Equation $x^{2}-\left(k^{2}-k\right) y^{2}=2^{t}$. World Academy of Science, Engineering and Technology, 2008; 19: 697-701.
8. Merve Guney. Of the Pell equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=2^{t}$, when $N \in(\pm 1, \pm 4)$ Mathematica Aterna, 2012; 2(7): 629-638.
9. V. Sangeetha, M.A. Gopalan, Manju Somanath. On the Integral Solutions of the pell equation $x^{2}=13 y^{2}-3^{t}$, International Journal of Applied Mathematical Research, 2014; 3(1): 58-61.
10. M.A. Gopalan, G. Sumathi, S. Vidhayalakshmi. Observations on the hyperbola $x^{2}=19 y^{2}-3^{t}$, Scholars Journal of the Engineering and Technology, 2014; 2(2A): 152-155.
11. M.A.Gopalan, S. Vidhyalakshmi, A. Kavitha. "On the Integral Solution of the Binary Quadratic Equation $x^{2}=15 y^{2}-11^{t} "$, Scholars Journal of the Engineering and Technology, 2014; 2(2A): 156-158.
12. S. Vidhyalakshmi, V. Krithika, K. Agalya. On the Negative Pell Equation, Proceedings of the National Conference on MATAM, 2015; 4-9.
