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ABSTRACT 

Laminar chaos, as an emerging type of chaos, is different from 

traditional chaos. It has a chaotically varying laminar phase and is 

periodically interrupted by irregular bursts. By modulating laminar 

chaos through a star-coupled system, we find that when the time-

varying time-lag amplitude of the system is mismatched, the oscillators 

exhibit oscillatory synchronization behaviors (laminar region is 

completely synchronized, and the sequence values of the chaotic 

region are alternately transformed) as the coupling strength reaches a certain threshold, but 

the difference between the peripheral oscillators is smaller than that between the central 

oscillator and the peripheral oscillators. These findings deepen our understanding of the 

laminar flow chaotic synchronization and regulation mechanisms, and open up new 

perspectives for the study of the synchronization behavior of chaotic systems. Future studies 

can explore the synchronization characteristics under different parameter conditions and 

apply these findings to practical engineering and technological fields, thus promoting the 

development of related fields. 

 

KEYWORDS: Laminar chaos; laminar chaos synchronization; oscillation synchronization; 

star coupling. 

 

1. INTRODUCTION 

Time delay is a pervasive phenomenon in nature and in several scientific fields, including 

control theory,
[1,2]

 chaos control,
[3,4]

 engineering,
[5,6]

 chemistry,
[7]

 biology,
[8]

 and life 

sciences.
[9]

 Such delays are primarily due to limitations in the rate of information transfer and 
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reaction time of dynamic systems. The existence of time delays leads to a range of complex 

and fascinating phenomena, such as bifurcation,
[10]

 chaotic behavior
[11]

 and multistability of 

systems,
[12]

 which provide a window to deeply understand and explore the dynamic behavior 

of systems. 

 

We know relatively little about the dynamics of time-varying time-delay systems compared 

to systems with constant time lag. Recent studies have rigorously explored time-varying 

time-lag systems and clarified the concepts of conservative and dissipative delays.
[13]

 In this 

context, David et al.
[14]

 moderated the periodic dynamics of length and the chaotic dynamics 

of intensity level by introducing two one-dimensional mappings in a scalar system and found 

that the periodic dynamics and the chaotic dynamics of intensity level in a scalar system 

demonstrated that the outputs of systems with time-varying delays can exhibit a novel chaotic 

behavior, discovering a new chaotic state and naming it as called laminar chaos. Laminar 

chaos, as defined in Refs.
[14]

 is an oscillation with a laminar phase characterized by irregular 

periodic interruptions of the amplitude which are chaotically distributed. This is significantly 

different from conventional chaos. 

 

With the discovery of laminar chaos, it attracted a large number of scholars to flock into it 

and study it in various aspects, for example, in 2019 Joseph D as well as David et al. 

observed laminar chaos for the first time in optoelectronic experiments with time-varying 

delays at the same time proved its robustness,
[15]

 Thomas et al. investigated the dissipative 

delays and conserved delays in the experiments of a double-diode nonlinear circuit and found 

that in this system is capable of laminar mixing; in the same year,
[16]

 DD et al. from the 

Russian Academy of Sciences conducted the first experimental study of laminar chaos in a 

radio-engineering delay-feedback generator, in which the delay time is modulated by an 

external harmonic signal.
[17]

 The regions of existence of various laminar flow chaotic states in 

the plane of external excitation parameters were mapped. The nonlinear function of the 

generator in the laminar flow chaotic state is reconstructed. Its existence in natural systems is 

further confirmed. 

 

However, at present, most of the domestic and international studies on laminar chaos are on 

how to observe or test the laminar chaos itself under the influence of time lag, and few 

studies have been conducted on the synchronization behavior of this new type of chaos. 

Vladimir et al. in 2021 explored the behavior of laminar chaos in self-oscillating ring systems 

and focused on analyzing its stability under different delay modes, which provided important 
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insights for understanding the complex behavior of chaotic systems. important insights, and 

also concluded that two laminar chaotic systems are capable of generating oscillatory 

synchronization behavior (complete synchronization of laminar regions and alternating 

sequence value transformations in chaotic regions) under certain conditions
[18]

; In 2022 

Taniya Khatun et al. made the first study of the synchronization behavior of laminar chaos, 

and found that the two systems are capable of going from generalized hysteresis to 

generalized expected synchronization to complete synchronization under different time 

delays. phenomenon and found essentially no similarity with the traditional chaotic 

synchronization phenomenon.
[19]

 However, the synchronization behavior of laminar chaotic 

systems under other coupling modes has not been mentioned by scholars, so this study 

intends to conduct an in-depth study of laminar chaos through the star coupling mode, and to 

explore the synchronization behavior of laminar chaotic systems and their synchronization 

effects under the star coupling mode. 

 

We consider a time-varying time-lag system and couple four such systems by means of a 

star-coupling model
[20, 21]

 and find that, under the star-coupling approach, the system exhibits 

different synchronization effects with different parameter variations, and the results show 

that, for the system with inconsistent access mapping parameters, the oscillators exhibit 

oscillatory synchronization behaviors as the coupling strength reaches a certain threshold, but 

the difference between the peripheral oscillators is smaller than the difference between the 

center and peripheral oscillators. 

 

2. Model of laminar chaos 

Introducing a time-varying time-lag equation as in Eq. (1). 

 

 

Where  is the access mapping, which can also be called the delay parameter, 

and is one of the necessary conditions for generating into laminar flow chaos, and 

 is the time-varying delay with period 1. 

 

The nonlinear function  is a generalized Logistic mapping, which is named Cubic 

mapping in this paper, in the following form 
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where  is the iteration time step and ρ is a tunable parameter, since  determines the chaotic 

effect of the system, so in this paper, we refer to it as the chaotic observation value, by 

drawing the bifurcation diagram of this mapping, and at the same time numerically 

calculating its Lyapunov exponent, we can derive its chaotic region as shown in Fig. 1, when 

the Lyapunov exponent is greater than 0, i.e., when the chaotic observation value 

corresponding to the red region in the diagram can make the system produce chaos, and the 

interval of its chaotic observations is . 

 

 

Fig. 1: Bifurcation plots of nonlinear functions, Lyapunov exponents, where red regions 

indicate that their Lyapunov exponents are greater than 0. 

 

We validate Eq. (1) by numerical simulation through the fourth-order Lungkuta method with 

a step size of 0.0001, and we find that the chosen mapping is able to produce laminar chaos 

as shown in Fig. (2). When , the system is dissipative delayed, which exhibits a 

laminar chaotic state as shown in Fig. 2(a), and when , the system is conservative 

delayed, which exhibits a turbulent chaotic state as shown in Fig. 2(b) shown. 
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Fig. 2: Time series chart, where  (a),(b) the time delay  is1.50,1.54 

respectively. 

 

3. Model of Star Coupling 

The star coupling model is a mathematical model that describes the interaction of a multi-

node system in which there is a coupling relationship between a central node and multiple 

peripheral nodes. To describe the star coupling model specifically, we can use a general 

coupling equation. Equation (3) is a simple formula for the star coupling model: 

 

 

Where:  denotes the state variable of the ith node,  is the internal dynamics equation 

of the node that describes the law of independent evolution of that node. n is the number of 

nodes,  is the coupling strength between node i and node j,  describes the 

coupling function between the nodes, ε is the strength of the introduction of the external 

noise, and  is the agitated sound term. 

 

Since this paper focuses on the linear coupling of N equal to 4, i.e., four laminar chaotic 

oscillators, the model of this star-shaped coupling can be represented by Fig. 3. 
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Fig. 3: Four-oscillator star coupling model. 

 

In this paper, only this model is simulated, so let the noise term be constant equal to 0. 

Bringing the laminar flow chaotic system selected in this paper into Eq. (4), the following 

coupling equation is obtained. 

 

 

Where , characterizing the inertial properties of the system, is determined by the 

nonlinear function , , ,  is the 

coupling coefficient, and ρ is the chaotic observation. 

 

4. Study of system synchronization effects under inconsistent access mapping 

parameters 

We study the synchronization effect and synchronization behavior of the coupled system 

under the star coupling model based on setting different amplitudes of the delay parameter in 

the access mapping parameter, respectively, setting the amplitude settings in the access 

mapping as  and bringing into Eq. (4) to be 

verified in simulation by the fourth-order Lungerkuta method with the step size of 0.0001,. 

The following results are obtained. 
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As demonstrated by each oscillator sequence in Fig. 4(a), when the coupling strength is 0.5, 

the difference between the values of each oscillator sequence is large, which indicates that the 

system is in an unsynchronized state, but with the increase of the coupling strength, the 

values of the sequences are basically completely overlapped when the coupling strength is 

1.2, but in the chaotic region, their values are not completely overlapped, and there is an 

error, as demonstrated in Fig. 4(b). 

 

 

Fig. 4: (a),(b) Sequence diagrams of the oscillator corresponding to the coupling 

strengths , respectively; where the black line is the sequence , the 

green line is , the red line is , and the blue line is , and the parameters are 

set as follows: ， ，  . 

 

In order to explore this reason, we further calculate the phase diagrams between the 

oscillators when the coupling strength is 1.2, and obtain the results shown in Fig. 5, where we 

find that the phase diagrams of its center oscillator, , and its peripheral oscillators, 

, , and , show a straight line variation around the slope of 1, which can be 

seen in Fig. 5(a,b,c); whereas the phase diagrams between the peripheral oscillators are direct 

straight line with slope 1, but there is still a small error, which can be seen in Fig. 5(d,e,f) It is 

thus concluded that in this coupled modulation system, the oscillators do not exhibit a fully 

synchronized behavior. 
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Fig. 5: Phase diagrams between each oscillator, where (a): oscillator ,  phase 

diagram, (b): oscillator ,  phase diagram, (c): oscillator ,  phase 

diagram, (d): oscillator ,  phase diagram, (e): oscillator ,   phase 

diagram, and (f): oscillator ,  phase diagram, when the coupling strength ω = 

1.2. 

 

However, we can observe in Fig. 4(b) that the oscillator sequences are partially synchronized 

in some regions, and in order to study it more deeply, we show the sequence difference of 

each oscillator in Fig. 6, Fig. 7 when the coupling strength is 1.2, and observing Fig. 6 we 

find that when the coupling strength is sufficiently large, the inter-oscillator difference is 

gradually hovering around 0. However, the difference between the center oscillator and the 

peripheral oscillators is significantly larger than that between the peripheral oscillators, and 

we also conclude that it does not show a completely synchronized state, but when we zoom in 

its sequence difference, we find that at coupling strength 1.2, the sequence difference of the 

system is completely 0 in the laminar region, and the difference in the chaotic region hovers 

around 0, forming the characteristic of oscillatory synchronization, please refer to Fig. 7(b). 
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Fig. 6: Plot of the difference between each oscillator with respect to time, the horizontal 

coordinate is the time t, the vertical coordinate is the difference, where(a)：

，(b)： ，(c)： ，(d)： ，(e)： 

，(a)： ， . 

 

 

Fig. 7: Localized zoomed-in plots of sequence differences at different coupling strengths 

corresponding to (a): , (b): , where (c) is a localized zoomed-in plot of Fig. 

6. 

 

In order to comprehensively investigate the influence of the coupling strength on the 

synchronization behavior of the system, we continue to calculate the average difference of the 

difference of each sequence of differences in the system, as shown in Fig. 8, where the 

horizontal coordinate is the time t, the green, yellow, and brown lines denote the difference 
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between the peripheral oscillators, and the dark blue, blue, and violet lines denote the 

difference between the central oscillator and the peripheral triple oscillator), and it is found 

that with the gradual coupling strength enhancement, the difference between each oscillator 

constantly fluctuates and the fluctuation is not regular, but its difference gradually decreases, 

from the beginning of the fluctuation around 0.5 to 2 gradually decreases and stabilizes below 

0.5, after the coupling strength is greater than 1.1, the difference of each oscillator sequence 

is stabilized at a certain plateau, but the difference between different oscillators stabilizes at 

the plateau of inconsistency, specifically, we find that the difference between the sequences 

 and  is significantly larger than that between , and 

the system is gradually stabilized after the coupling strength reaches a certain threshold, 

which leads to the conclusion that the coupling effect between peripheral oscillators is 

significantly higher than that between the center oscillator and peripheral oscillators in this 

coupling model. This difference does not change with the increase of the coupling strength. 

 

 

Fig. 8: The process of the variation of the mean difference between the vibrators of the 

system with the coupling strength is plotted as shown in the legend of Fig. Each line 

represents the mean difference between the vibrators respectively, and the form of the 

variation of the difference with the coupling strength remains basically the same. where 

， ， . 

 

In summary, it is concluded that under the laminar chaos in the star coupling model, with the 

increase of the coupling strength, the system gradually changes from unsynchronized to 

synchronized tendency, and the difference value between the oscillators fluctuates irregularly 

for a period of time, but after the coupling strength increases to 1.1, the coupling system is 
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gradually stabilized and the difference value of each oscillator is in the plateau stage, and the 

system finally exhibits the oscillatory synchronization, and at the same time, it is proved that 

the center of the oscillator and peripheral oscillators under star coupling are repulsive 

anisotropy originated from themselves, which is independent of the star coupling. It also 

confirms that the repulsive anisotropy between the center and peripheral vibrators under the 

star coupling originates from itself and has nothing to do with the coupling strength. 

 

5. CONCLUSION 

This paper reveals the diversity and complexity of the synchronization behaviors of the 

system under different coupling strength conditions through an in-depth study of the effects 

of the star-shaped coupling mode adopted by the four vibrators on the laminar flow chaotic 

model. An exhaustive discussion of the synchronization behavior of the laminar flow chaotic 

system under the four-vibrator star coupling model aims to deepen the understanding of the 

dynamical properties of the system under this special coupling structure. By systematically 

analyzing the synchronization behavior of the laminar chaotic system under different access 

mapping parameters, we find that the system transitions from an initial asynchronous state to 

an oscillatory synchronized state as the coupling strength increases, exhibiting intuitive 

evidence of the effect of the coupling strength on the synchronization process. 

 

The experimental results further reveal that during the gradual increase of the coupling 

strength, the inter-oscillator difference of the system exhibits an obvious fluctuation pattern, 

and the difference tends to stabilize after a certain coupling strength is reached, showing a 

plateau period of synchronization. This phenomenon not only demonstrates the effectiveness 

of the star-shaped coupling mode in facilitating the synchronization of laminar chaotic 

systems, but also emphasizes the complexity and subtle changes in the internal dynamics of 

the system during the process of reaching a synchronized state. In particular, it is found that 

the difference between the peripheral oscillators of the system is significantly smaller than 

that between the central and peripheral oscillators in the star-coupled mode, a finding that 

further corroborates the importance of the far-reaching influence of the coupling structure on 

the synchronization behavior of the system, and at the same time reveals the obvious 

differences in the dynamical behaviors between the central and peripheral oscillators. 

 

We believe that the results observed in this paper can also be verified experimentally. Further 

studies are needed in order to explore the complete spectrum of complex synchronization 

modes in time-varying time-lag systems under diverse coupling conditions, and in the course 
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of the experiments, more interesting phenomena may be able to be generated. 
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