MAXIMAL EFFICIENCIES IN -ALLOY JUNCTION SOLAR CELLS AT 300 K, ACCORDING TO HIGHEST HOT RESERVOIR TEMPERATURES, OBTAINED FROM CARNOT-EFICIENCY THEOREM. (VI)

Prof. Dr. Huynh Van Cong*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

ABTRACT

In $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n})\left[\mathrm{X}(\mathrm{x}) \equiv \mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\right]$-alloy junction solar cells at $\mathrm{T}=300 \mathrm{~K}, 0 \leq \mathrm{x} \leq 1$, by basing on the same physical model and the same treatment method, as those used in our recent works ${ }^{[1,2]}$, we will also investigate the maximal efficiencies, $\eta_{\text {Imax.(IImax.) }}$, obtained at the open circuit voltage $\mathrm{V}_{\text {oc }}\left(=\mathrm{V}_{\text {ocI(ocII) }}\right)$, according to highest hot reservoir temperatures, $\mathrm{T}_{\mathrm{H}}(\mathrm{K})$, obtained from the Carnot efficiency theorem, which was demonstrated by the use of the entropy law. In this word, some concluding remarks are given in the following. (1) In the heavily doped emitter region, the effective density of electrons (holes), N^{*}, given in parabolic conduction (valence) bands, expressed as functions of the total dense impurity density, N , donor (acceptor)radius, $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$, and x -concentration, is defined in Eq. (9d), as:
$\mathrm{N}^{*}\left(\mathrm{~N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, where $\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}$ is the Mott critical density in the metal-insulator transition, determined in Eq. (9a). Then, we have showed that (i) the origin of such the Mott's criterium, Eq. (9a), is exactly obtained from the reduced effective WignerSeitz radius $r_{\text {sn(sp) }}$, characteristic of interactions, as that given in Equations (9b, 9c), and further (ii) $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail (EBT), as that demonstrated $\mathrm{in}^{[1]}$ (2) In Table 3n, for
$\mathrm{n}^{+}-\mathrm{pX}(\mathrm{x})$-alloy junction solar cell and for $\mathrm{r}_{\mathrm{Sn}(\mathrm{Cd})}$-radius, one obtains with increasing $\mathrm{x}=(0, \quad 0.5, \quad 1): \quad \eta_{\operatorname{Imax} .}(\searrow)=\mathbf{3 2 . 8 3 \%}, \quad 31.96 \%, \quad 31.15 \%$, according to $\mathrm{T}_{\mathrm{H}}(\searrow)=446.6 \mathrm{~K}, 440.9 \mathrm{~K}, 435.7 \mathrm{~K}$, at $\mathrm{V}_{\text {ocI }}=\mathbf{1 . 0 6} \mathrm{V}, 1.06 \mathrm{~V}, 1.07 \mathrm{~V}$, respectively. (3) In Table 5 p , for $\mathrm{p}^{+}-\mathrm{nX}(\mathrm{x})$-alloy junction solar cell and for $\mathrm{r}_{\mathrm{Cd}(\mathrm{Sn}) \text {-radius, with }}$ increasing $x=(0,0.5,1)$, one obtains with increasing $x=(0,0.5,1): \eta_{\text {IImax }}(\nearrow)=32.51 \%$, 32.51%, $\mathbf{3 3 . 0 7 \%}$, according to $\mathrm{T}_{\mathrm{H}}(\nearrow)=444.5 \mathrm{~K}, 444.5 \mathrm{~K}, \mathbf{4 4 8 . 2} \mathbf{~ K}$, at $\mathrm{V}_{\text {ocII }}(\mathrm{V})\left[>\mathrm{V}_{\text {ocI }}(\mathrm{V})\right]=1.17 \mathrm{~V}, 1.18 \mathrm{~V}, 1.20 \mathrm{~V}$, respectively, suggesting that such $\eta_{\text {Imax.(IImax.) }}$-and $-\mathrm{T}_{\mathrm{H}}$ variations depend on $\mathrm{V}_{\text {ocII }}(\mathrm{V})\left[>\mathrm{V}_{\text {ocI }}(\mathrm{V})\right]$ - ones. (4) Finally, as discussed in above remarks (2) and (3), for $\mathrm{x}=1$, the $\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy becomes the GaAsone, and therefore, $\eta_{\text {Imax }}=31.15 \%$ and $\eta_{\text {IImax. }}=33.07 \%$, which can be compared with the corresponding results obtained by Moon et al. ${ }^{[6]}$ and Green et al. ${ }^{[4]}$ for the single-junction GaAs thin-film solar cell, 22.08% and 29.71%, respectively, suggesting that in order to obtain the highest efficiencies, the $\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy junction solar cells could be chosen rather than the crystalline GaAs-junction solar cell.

KEYWORDS: single $\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy junction solar cell; single crystalline GaAs-junction solar cell; photovoltaic conversion factor; photovoltaic conversion efficiency.

INTRODUCTION

In single $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}\left(\equiv \mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\right)$-alloy junction solar cells at $300 \mathrm{~K}, 0 \leq \mathrm{x} \leq 1$, by basing on the same physical model and treatment method, as used in our two recent works ${ }^{[1,2]}$, and also on other ones [2-11], we will investigate the highest (or maximal) efficiencies, $\eta_{\text {Imax.(IImax.), }}$, according to highest hot reservoir temperatures $\mathrm{T}_{\mathrm{H}}(\mathrm{K})$, obtained from the Carnot- efficiency theorem, being proved by the entropy law.

In the following, we will show that the energy-band-structure parameters, due to the effects of x-concentration, size impurity, temperature T and heavy doping, affect strongly the dark (or total) minority-carrier saturation current density and the photovoltaic conversion effect.

ENERGY BAND STUCTURE PARAMETERS

A. Effect of x - concentration

In the $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n})$ single $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}(\mathrm{x})$ - alloy junction at $T=0 \mathrm{~K}$, the energy-bandstructure parameters ${ }^{[1]}$, are expressed as functions of x , are given in the following.
(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by:
$\mathrm{m}_{\mathrm{c}}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}=0.066 \times \mathrm{x}+0.13 \times(1-\mathrm{x})$, and
$\mathrm{m}_{\mathrm{v}}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}=0.291 \times \mathrm{x}+0.5 \times(1-\mathrm{x})$,
so that one obtains: $\mathrm{m}_{\mathrm{c}}(\mathrm{x}=1) / \mathrm{m}_{\mathrm{o}}=\left(\mathrm{m}_{\mathrm{c}(\mathrm{GaAs})} / \mathrm{m}_{\mathrm{o}}\right)=0.066$,
$\mathrm{m}_{\mathrm{v}}(\mathrm{x}=1) / \mathrm{m}_{\mathrm{o}}=\left(\mathrm{m}_{\mathrm{v}(\text { GaAs })} / \mathrm{m}_{\mathrm{o}}\right)=0.291$, and $\quad \mathrm{m}_{\mathrm{c}}(\mathrm{x}=0) / \mathrm{m}_{\mathrm{o}}=\left(\mathrm{m}_{\mathrm{c}(\mathrm{GaP})} / \mathrm{m}_{\mathrm{o}}\right)=0.13$,
$\mathrm{m}_{\mathrm{v}}(\mathrm{x}=0) / \mathrm{m}_{\mathrm{o}}=\left(\mathrm{m}_{\mathrm{v}(\mathrm{GaP})} / \mathrm{m}_{\mathrm{o}}\right)=0.5$.
(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single crystalline X - alloy is found to be defined by:
$\varepsilon_{0}(x)=13.13 \times x+11.1 \times(1-x)$,
which gives: $\varepsilon_{0}(\mathrm{x}=1)=\varepsilon_{\mathrm{GaAs}}=13.13$, and $\varepsilon_{0}(\mathrm{x}=0)=\varepsilon_{\mathrm{GaP}}=11.1$.
(iii)-Finally, the unperturbed band gap at 0 K is found to be given by:
$\mathrm{E}_{\mathrm{go}}(\mathrm{x})$ in $\mathrm{eV}=1.52 \times \mathrm{x}+1.796 \times(1-\mathrm{x})$,
giving rise to: $\mathrm{E}_{\text {gio }}(\mathrm{x}=1)=\mathrm{E}_{\text {gGaAs }}=1.52 \mathrm{eV}$, and $\mathrm{E}_{\text {gio }}(\mathrm{x}=0)=\mathrm{E}_{\mathrm{gGaP}}=1.796 \mathrm{eV}$.
Therefore, we can define the effective donor (acceptor)-ionization energy, at $r_{d(a)}=r_{d o(a 0)}=r_{P(G a)}=0.11 \mathrm{~nm}(0.126 \mathrm{~nm})$, in absolute values as:
$\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})=\frac{13600 \times\left[\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}\right]}{\left[\varepsilon_{0}(\mathrm{x})\right]^{2}} \mathrm{meV}$,
and then, the isothermal bulk modulus, by:
$\mathrm{B}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \equiv \frac{\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})}{\left(\frac{4 \pi}{3}\right) \times\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}\right)^{3}}$.

B. Effects of Impurity-size, with a given x

Here, the effects of $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$ and x - concentration affect the changes in all the energy-bandstructure parameters, expressed in terms of the effective relative dielectric constant $\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, in the following.

At $r_{d(a)}=r_{d o(a o)}$, the needed boundary conditions are found to be, for the impurity-atom volume $\mathrm{V}=(4 \pi / 3) \times\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)^{3}, \mathrm{~V}_{\mathrm{do}(\mathrm{ao})}=(4 \pi / 3) \times\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}\right)^{3}$, for the pressure $\mathrm{p}, \mathrm{p}_{\mathrm{o}}=0$, and for the deformation potential energy (or the strain energy) $\sigma, \sigma_{\mathrm{o}}=0$. Further, the two important equations (Van Cong et al., 1984), used to determine the σ-variation, $\Delta \sigma \equiv$
$\sigma-\sigma_{o}=\sigma$, are defined by: $\frac{d p}{d v}=-\frac{B}{v}$ and $p=-\frac{d \sigma}{d v}$. giving: $\frac{d}{d v}\left(\frac{d \sigma}{d v}\right)=\frac{B}{v}$. Then, by an integration, one gets:
$\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})}=\mathrm{B}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left(\mathrm{V}-\mathrm{V}_{\mathrm{do}(\mathrm{ao})}\right) \times \ln \left(\frac{\mathrm{v}}{\mathrm{V}_{\mathrm{do}(\mathrm{ao})}}\right)=\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left[\left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\mathrm{r}_{\mathrm{do}(\mathrm{ao})}}\right)^{3}-1\right] \times \ln \left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\left.\mathrm{r}_{\mathrm{do}(\mathrm{a} 0}\right)}\right)^{3} \geq 0 .(6)$ Furthermore, we also shown that, as $r_{d(a)}>r_{d o(a o)}\left(r_{d(a)}<r_{d o(a 0)}\right)$, the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, and the effective donor (acceptor)-ionization energy $\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ in absolute values, obtained in the effective Bohr model, which is represented respectively by: $\pm\left[\Delta \sigma\left(r_{d(a)}, x\right)\right]_{n(p)}$,
$\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}), \mathrm{x})}-\mathrm{E}_{\mathrm{go}}(\mathrm{x})=\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}),}, \mathrm{x}\right)-\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})=\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left[\left(\frac{\varepsilon_{0}(\mathrm{x})}{2\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)}\right)^{2}-1\right]=+\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})}\right.$, for $r_{d(a)} \geq r_{d o(a o)}$, and for $r_{d(a)} \leq r_{d o(a))}$,
$E_{g n(g p)}\left(r_{d(a)}, x\right)-E_{g o}(x)=E_{d(a)}\left(r_{d(a)}, x\right)-E_{d o(a 0)}(x)=E_{d o(a 0)}(x) \times\left[\left(\frac{z_{0}(x)}{\varepsilon\left(\mathrm{ra}_{\mathrm{d}(\mathrm{a})}\right)}\right)^{2}-1\right]=-\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})} .(7)$
Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric constant $\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and energy band gap $\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, as:
(i)-for $r_{d(a)} \geq r_{d o(a 0)}$, since $\varepsilon\left(r_{d(a)}, x\right)=\frac{\varepsilon_{0}(\mathrm{x})}{\sqrt{1+\left[\left(\frac{r_{d(a)}}{r_{d 0(a 0)}}\right)^{3}-1\right] \times \ln \left(\frac{r_{d(a)}}{r_{\mathrm{do}(\mathrm{ao})}}\right)^{3}}} \leq \varepsilon_{0}(\mathrm{x})$,
 according to the increase in both $E_{g n(g p)}\left(r_{d(a)}, x\right)$ and $E_{d(a)}\left(r_{d(a)}, x\right)$, for a given x, and
 given by: $\left[\left(\frac{r_{d(a)}}{r_{\mathrm{do}(\mathrm{ao})}}\right)^{3}-1\right] \times \ln \left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\mathrm{r}_{\mathrm{do}(\mathrm{ao})}}\right)^{3}<1$,
$\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)-\mathrm{E}_{\mathrm{go}}(\mathrm{x})=\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}), \mathrm{x}} \mathrm{x}\right)-\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})=-\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left[\left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\mathrm{rdopo}_{(\mathrm{ao})}}\right)^{3}-1\right] \times \ln \left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\mathrm{rdop}_{(\mathrm{ao})}}\right)^{3} \leq 0$,
corresponding to the decrease in both $\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and $\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, for a given x .

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (MIT) at $\mathrm{T}=0 \mathrm{~K}, \mathrm{~N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, was given by the Mott's criterium, as:
$\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)^{1 / 3} \times \mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=\mathrm{M}_{\mathrm{n}(\mathrm{p})}, \mathrm{M}_{\mathrm{n}(\mathrm{p})}=0.25$,
which can be explained from the definition of the reduced effective Wigner-Seitz (WS) radius $\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}$, characteristic of interactions, by:
$\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv\left(\frac{3}{4 \pi \mathrm{~N}}\right)^{1 / 3} \times \frac{1}{\mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})} \mathrm{x}\right)}}=1.1723 \times 10^{8} \times\left(\frac{1}{\mathrm{~N}}\right)^{1 / 3} \times \frac{\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}), \mathrm{x})}\right.}$,
being equal to, in particular, at $N=N_{\operatorname{CDn}(\operatorname{CDp})}\left(r_{d(a)}, x\right): r_{s n(s p)}\left(N_{C D n(\operatorname{CDp})}\left(r_{d(a)}, x\right), r_{d(a)}, x\right)=$ 2.4814, for any $\left(r_{d(a)}, x\right)$-values. So, from Eq. (9b), one has:
$\mathrm{N}_{\mathrm{CDn}(\operatorname{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{X}\right)^{1 / 3} \times \mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=\left(\frac{3}{4 \pi}\right)^{1 / 3} \times \frac{1}{2.4814}=\mathbf{0 . 2 5}=(\mathbf{W S})_{\mathbf{n}(\mathrm{p})}=\mathbf{M}_{\mathrm{n}(\mathrm{p})}$.
In our recent paper ${ }^{[1]}$, we have also showed that $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail (EBT), with a precision of the order of 2.92×10^{-7}. So, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined by:
$\mathrm{N}^{*}\left(\mathrm{~N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$,
which will be used in the $n(p)$-type degenerate $X(x)$-alloy, as follows.

C. Effect of temperature T, with given x and $r_{d(a)}$

Here, the intrinsic band gap $\mathrm{E}_{\operatorname{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{T}\right)$ at any T is given by:
$\mathrm{E}_{\text {gin(gip) }}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{T}\right)$ in $\mathrm{eV}=\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)-10^{-4} \times \mathrm{T}^{2} \times\left[\frac{5.405 \times \mathrm{x}}{\mathrm{T}+204}+\frac{3.065 \times(1-\mathrm{x})}{\mathrm{T}+94}\right]$,
Which gives: $\mathrm{E}_{\mathrm{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}, \mathrm{x}=0, \mathrm{~T}=0 \mathrm{~K}\right)=1.796 \mathrm{eV}$ and $\mathrm{E}_{\mathrm{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao}), \mathrm{x}}=1, \mathrm{~T}=0 \mathrm{~K}\right)=1.52 \mathrm{eV}$, and

$$
\mathrm{E}_{\mathrm{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}, \mathrm{x}=0, \mathrm{~T}=300 \mathrm{~K}\right)=1.72599 \mathrm{eV}
$$

and
$\mathrm{E}_{\text {gin(gip) }}\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}, \mathrm{x}=1, \mathrm{~T}=300 \mathrm{~K}\right)=1.42348 \mathrm{eV}$, suggesting that, for given x and $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$, $\mathrm{E}_{\text {gin(gip) }}$ decreases with an increasing T , as observed in next Table 1 in Appendix 1.

Furthermore, in the $n(p)$-type $X(x)$-alloy, one can define the intrinsic carrier concentration $n_{\text {in(ip) }}$ by: $n_{i n(i p)}^{2}\left(r_{d(a)}, x, T\right) \equiv N_{c}(T, x) \times N_{v}(T, x) \times \exp \left(\frac{- \text { Eging(jip) }\left(r_{d(a)}, x, T\right)}{k_{B} T}\right)$,
where $N_{c(v)}(T, x)$ is the conduction (valence)-band density of states, being defined as:
$\mathrm{N}_{\mathrm{c}(\mathrm{v})}(\mathrm{T}, \mathrm{x})=2 \times\left(\frac{\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) \times \mathrm{k}_{\mathrm{B}} \mathrm{T}}{2 \pi \hat{h}^{2}}\right)^{\frac{3}{2}}\left(\mathrm{~cm}^{-3}\right)$.

D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works ${ }^{[1,2]}$, the Fermi energy $\mathrm{E}_{\mathrm{Fn}}\left(-\mathrm{E}_{\mathrm{Fp}}\right)$, band gap narrowing (BGN), and apparent band gap narrowing (ABGN), are reported in the following.

First, the reduced Fermi energy $\eta_{\mathrm{n}(\mathrm{p})}$ or the Fermi energy $\mathrm{E}_{\mathrm{Fn}}\left(-\mathrm{E}_{\mathrm{Fp}}\right)$, obtained for any T and any effective $d(a)$-density, $N^{*}\left(N, r_{d(a)}, x\right)=N^{*}$, defined in Eq. (9d), for a simplicity of presentation, being investigated in our previous paper ${ }^{[8]}$, with a precision of the order of 2.11×10^{-4}, is found to be given by:
$\eta_{\mathrm{n}(\mathrm{p})}(\mathrm{u}) \equiv \frac{\mathrm{E}_{\mathrm{Fn}}(\mathrm{u})}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\left(\frac{-\mathrm{E}_{\mathrm{Fp}}(\mathrm{u})}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right)=\frac{\mathrm{G}(\mathrm{u})+\mathrm{Au}^{\mathrm{B}} \mathrm{F}(\mathrm{u})}{1+\mathrm{Au}^{\mathrm{B}}}, \mathrm{A}=0.0005372$ and $\mathrm{B}=4.82842262$,
where u is the reduced electron density, $u\left(N^{*}, T, x\right) \equiv \frac{N^{*}}{N_{c(v)}(T, x)}, F(u)=\mathrm{au}^{\frac{2}{3}}\left(1+\mathrm{bu}^{-\frac{4}{3}}+\mathrm{cu}^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$, $\mathrm{a}=[(3 \sqrt{\pi} / 4) \times \mathrm{u}]^{2 / 3}, \quad \mathrm{~b}=\frac{1}{8}\left(\frac{\pi}{9}\right)^{2}, \quad \mathrm{c}=\frac{62.3739855}{1920}\left(\frac{\pi}{9}\right)^{4}, \quad$ and $\quad \mathrm{G}(\mathrm{u}) \simeq \operatorname{Ln}(\mathrm{u})+2^{-\frac{3}{2}} \times \mathrm{u} \times \mathrm{e}^{-\mathrm{du}} ;$ $\mathrm{d}=2^{3 / 2}\left[\frac{1}{\sqrt{27}}-\frac{3}{16}\right]>0$.

Here, one notes that: (i) as $u \gg 1$, according to the HD [d(a)-X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function $\mathrm{F}(\mathrm{u})$, and (ii) $\frac{\mathrm{E}_{\mathrm{Fn}}(\mathrm{u} \ll 1)}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\left(\frac{-\mathrm{E}_{\mathrm{Fp}}(\mathrm{u} \ll 1)}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right) \ll-1$, to the LD [a(d)- X(x)- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function $G(u)$. Here, the notations: $\mathrm{HD}(\mathrm{LD})$ and $\mathrm{ER}(\mathrm{BR})$, mean: heavily doped (lightly doped)-cases and emitter (base)-regions, respectively.

So, the numerical results of $\mathrm{B}_{\mathrm{do}(\mathrm{ao})}, \varepsilon, \mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}, \mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}, \mathrm{E}_{\mathrm{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{T}\right)$, and $\eta_{\mathrm{n}(\mathrm{p})}(\mathrm{u})$, calculated using Equations (5), (8a, 8b), (9a), (10), and (12), respectively.

Table 1 in Appendix 1

Now, if denoting now the effective Wigner-Seitz radius $r_{\mathrm{sn}(\mathrm{sp})}$, characteristic of the interactions, by:
$\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=1.1723 \times 10^{8} \times\left(\frac{1}{\mathrm{~N}^{*}}\right)^{1 / 3} \times \frac{\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x})}{\varepsilon\left(\mathrm{rd}_{\mathrm{d}(\mathrm{a})} \mathrm{x}\right)}$,
the correlation energy of an effective electron gas, $\mathrm{E}_{\mathrm{cn}(\mathrm{cp})}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, is given as ${ }^{[4]}$:
$\mathrm{E}_{\mathrm{cn}(\mathrm{cp})}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=\frac{-0.87553}{0.0908+\mathrm{r}_{\operatorname{sn}(\mathrm{sp})}}+\frac{\frac{0.87553}{0.0908+\mathrm{r}_{\mathrm{snn}}(\mathrm{sp})}+\left(\frac{2[1-\ln (2)]}{\pi^{2}}\right) \times \ln \left(\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}\right)-0.093288}{1+0.03847728 \times \mathrm{r}_{\operatorname{sn}(\mathrm{sin})}^{1.63878}} \mathrm{C}$.

Now, taking into account various spin-polarized chemical potential-energy contributions such as (Van Cong, 2024): exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy,
and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowing (BGN) are given as follows.
Thus, in the n-type HD X(x)- alloy, the BGN is found to be given by ${ }^{[2]}$:
$\Delta \mathrm{E}_{\mathrm{gn}}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \simeq \mathrm{a}_{1} \times \frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}} \mathrm{x}\right)} \times \mathrm{N}_{\mathrm{r}}^{1 / 3}+\mathrm{a}_{2} \times \frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}} \mathrm{x}\right)} \times \mathrm{N}_{\mathrm{r}}^{\frac{1}{3}} \times\left(2.503 \times\left[-\mathrm{E}_{\mathrm{cn}}\left(\mathrm{r}_{\mathrm{sn}}\right) \times \mathrm{r}_{\mathrm{sn}}\right]\right)+$ $\mathrm{a}_{3} \times\left[\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}} \mathrm{x}\right)}\right]^{5 / 4} \times \sqrt{\frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{m}_{\mathrm{c}}}} \times \mathrm{N}_{\mathrm{r}}^{1 / 4}+\mathrm{a}_{4} \times \sqrt{\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)}} \times \mathrm{N}_{\mathrm{r}}^{1 / 2} \times 2+\mathrm{a}_{5} \times\left[\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)}\right]^{\frac{3}{2}} \times \mathrm{N}_{\mathrm{r}}^{\frac{1}{6}}$
$\mathrm{N}_{\mathrm{r}} \equiv\left(\frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}} \mathrm{x}\right)}\right),(14 \mathrm{n})$
Where $\mathrm{a}_{1}=3.8 \times 10^{-3}(\mathrm{eV}), \mathrm{a}_{2}=6.5 \times 10^{-4}(\mathrm{eV}), \mathrm{a}_{3}=2.8 \times 10^{-3}(\mathrm{eV}), \mathrm{a}_{4}=5.597 \times 10^{-3}(\mathrm{eV})$ and $\mathrm{a}_{5}=8.1 \times 10^{-4}(\mathrm{eV})$, and in the p-type HD X(x)- alloy, as:
$\Delta \mathrm{E}_{\mathrm{gp}}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \simeq \mathrm{a}_{1} \times \frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{a}} \mathrm{x}\right)} \times \mathrm{N}_{\mathrm{r}}^{1 / 3}+\mathrm{a}_{2} \times \frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{ra}_{\mathrm{a}} \mathrm{x}\right)} \times \mathrm{N}_{\mathrm{r}}^{\frac{1}{3}} \times\left(2.503 \times\left[-\mathrm{E}_{\mathrm{cp}}\left(\mathrm{r}_{\mathrm{sp}}\right) \times \mathrm{r}_{\mathrm{sp}}\right]\right)+$ $\mathrm{a}_{3} \times\left[\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{a}} \mathrm{x}\right)}\right]^{5 / 4} \times \sqrt{\frac{m_{c}}{m_{\mathrm{v}}}} \times \mathrm{N}_{\mathrm{r}}^{1 / 4}+2 \mathrm{a}_{4} \times \sqrt{\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)}} \times \mathrm{N}_{\mathrm{r}}^{1 / 2}+\mathrm{a}_{5} \times\left[\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)}\right]^{\frac{3}{2}} \times \mathrm{N}_{\mathrm{r}}^{\frac{1}{6}}$
$\mathrm{N}_{\mathrm{r}} \equiv\left(\frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}} \mathrm{x}\right)}\right)$,
Where $\mathrm{a}_{1}=3.15 \times 10^{-3}(\mathrm{eV}), \mathrm{a}_{2}=5.41 \times 10^{-4}(\mathrm{eV}), \mathrm{a}_{3}=2.32 \times 10^{-3}(\mathrm{eV}), \mathrm{a}_{4}=4.195 \times 10^{-3}(\mathrm{eV})$ and $\mathrm{a}_{5}=9.80 \times 10^{-5}(\mathrm{eV})$.

Therefore, in the $\mathrm{HD}[\mathrm{d}(\mathrm{a})-\mathrm{X}(\mathrm{x})-$ alloy] ER, we can define the effective extrinsic carrier concentration, $\mathrm{n}_{\text {en(ep) }}^{*}$, by :
$\mathrm{n}_{\mathrm{en}(\mathrm{ep})}^{*}\left(\mathrm{~N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \sqrt{\mathrm{N}^{*} \times \mathrm{p}_{\mathrm{o}}\left(\mathrm{n}_{\mathrm{o}}\right)}=\mathrm{n}_{\mathrm{in}(\mathrm{ip})}\left(\mathrm{T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \exp \left[\frac{\Delta \mathrm{E}_{\mathrm{agn}(\mathrm{agp})}}{2 \mathrm{k}_{\mathrm{B}} \mathrm{T}}\right]$,
where the apparent band gap narrowing (ABGN), $\Delta \mathrm{E}_{\text {agn(agp) }}$, is defined by:
$\Delta \mathrm{E}_{\mathrm{agn}}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \equiv \Delta \mathrm{E}_{\mathrm{gn}}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)+\mathrm{k}_{\mathrm{B}} \mathrm{T} \times \ln \left(\frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{c}}(\mathrm{T}, \mathrm{x})}\right)-\mathrm{E}_{\mathrm{Fn}}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{x}\right)$,
$\left.\Delta \mathrm{E}_{\text {agp }}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \equiv \Delta \mathrm{E}_{\mathrm{gp}}\left(\mathrm{N}^{*}, \mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)+\mathrm{k}_{\mathrm{B}} \mathrm{T} \times \ln \left(\frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{v}}(\mathrm{T}, \mathrm{x})}\right)+\mathrm{E}_{\mathrm{Fp}}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{x}\right)\right]$.

TOTAL MINORITY-CARRIER SATURATION CURRENT DENSITY

In the two $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}(\mathrm{x})$ - alloy -junction solar cells, denoted respectively by $\mathrm{I}(\mathrm{II})$, the total carrier-minority saturation current density is defined by:

$$
\begin{equation*}
\mathrm{J}_{\mathrm{oI}(\mathrm{oII})} \equiv \mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}+\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})} \tag{17}
\end{equation*}
$$

where $\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})}$ is the minority-electron (hole) saturation current density injected into the $\mathrm{LD}[\mathrm{a}(\mathrm{d})-\mathrm{X}(\mathrm{x})-$ alloy $] \mathrm{BR}$, and $\mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}$ is the minority-hole (electron) saturation-current density injected into the $\mathrm{HD}[\mathrm{d}(\mathrm{a})-\mathrm{X}(\mathrm{x})-$ alloy $]$ ER.

$\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})}$ in the LD[a(d)-X(x)- alloy]BR

Here, $\mathrm{J}_{\mathrm{Bpo} \text { (Bno) }}$ is determined by ${ }^{[2]}$:
$\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})}\left(\mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}\right)=\frac{\operatorname{exn}_{\text {ip(in) }}^{2}\left(\mathrm{~T}, \mathrm{ra}_{\mathrm{a}(\mathrm{d}), \mathrm{x}) \times} \times \sqrt{\frac{\mathrm{D}_{\mathrm{e}(\mathrm{h})}\left(\mathrm{Na}_{\mathrm{a}(\mathrm{d})} \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d}) \mathrm{x})}\right.}{\tau_{\mathrm{eB}(\mathrm{hB})}\left(\mathrm{Na}_{\mathrm{a}(\mathrm{d})}\right)}}\right.}{\mathrm{N}_{\mathrm{a}(\mathrm{d})}}$,
where $\mathrm{n}_{\mathrm{ip}(\mathrm{in})}^{2}\left(\mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ is determined Eq. (11), $\mathrm{D}_{\mathrm{e}(\mathrm{h})}\left(\mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}\right)$ is the minority electron (minority hole) diffusion coefficient:
$\mathrm{D}_{\mathrm{e}}\left(\mathrm{N}_{\mathrm{a}}, \mathrm{T}, \mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{e}} \times\left[200+\frac{8300}{1+\left(\frac{\mathrm{N}_{\mathrm{a}}}{1.3 \times 10^{17} \mathrm{~cm}^{-3}}\right)^{0.91}}\right] \times\left(\frac{\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)}{\varepsilon_{0}(\mathrm{x})}\right)^{2}\left(\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$,
$\mathrm{D}_{\mathrm{h}}\left(\mathrm{N}_{\mathrm{d}}, \mathrm{T}, \mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{e}} \times\left[130+\frac{270}{1+\left(\frac{\mathrm{N}_{\mathrm{d}}}{8 \times 10^{17} \mathrm{~cm}^{-3}}\right)^{1.25}}\right] \times\left(\frac{\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)}{\varepsilon_{0}(\mathrm{x})}\right)^{2}\left(\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$,
and $\tau_{\mathrm{eB}(\mathrm{hB})}\left(\mathrm{N}_{\mathrm{a}(\mathrm{d})}\right)$ is the minority electron (minority hole) lifetime in the BR :
$\tau_{e B}\left(N_{a}\right)^{-1}=\frac{1}{10^{-7}}+3 \times 10^{-13} \times N_{a}+1.83 \times 10^{-31} \times N_{a}^{2}$,
$\tau_{\mathrm{hB}}\left(\mathrm{N}_{\mathrm{d}}\right)^{-1}=\frac{1}{10^{-7}}+11.76 \times 10^{-13} \times \mathrm{N}_{\mathrm{d}}+2.78 \times 10^{-31} \times \mathrm{N}_{\mathrm{d}}^{2}$.

$\mathrm{J}_{\text {Eno(Epo) }}$ in the HD[d(a)- X(x)- alloy]ER

In the non-uniformly and heavily doped emitter region of $d(a)-X(x)$ devices, the effective Gaussian $\mathrm{d}(\mathrm{a})$-density profile or the $\mathrm{d}(\mathrm{a})$ (majority-e(h)) density, is defined in such the HD[d(a)- X(x) alloy] ER-width W, as ${ }^{[2]}$:
$\rho_{d(a)}\left(y, N^{*}, W\right)=N_{d(a)} \times \exp \left\{-\left(\frac{y}{W}\right)^{2} \times \ln \left[\frac{N^{*}}{N_{\mathrm{do}(a)}(\mathrm{W})}\right]\right\} \equiv \mathrm{N}^{*} \times\left[\frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{do}((a))}(\mathrm{W})}\right]^{-\left(\frac{\mathrm{y}}{\mathrm{W}}\right)^{2}}, 0 \leq \mathrm{y} \leq \mathrm{W}$,
$\mathrm{N}_{\text {do(ao) }}(\mathrm{W}) \equiv 7.9 \times 10^{17}\left(2 \times 10^{5}\right) \times \exp \left\{-\left(\frac{\mathrm{w}}{184.2(1) \times 10^{-7} \mathrm{~cm}}\right)^{1.066(0.5)}\right\}\left(\mathrm{cm}^{-3}\right)$,
where $\rho_{d(a)}(y=0)=N^{*}$ is the surface $d(a)$-density, and at the emitter-base junction, $\rho_{d(a)}(y=W)=N_{\text {do(ao) }}(W)$, which decreases with increasing W. Further, the "effective doping density" is defined by:
$N_{d(a)}^{*}\left(y, N^{*}, T, r_{d(a)}, x\right) \equiv \rho_{d(a)}(y) / \exp \left[\frac{\Delta E_{\mathrm{agn}(\mathrm{agp})}\left(\rho_{d(a)} \mathrm{T}_{\mathrm{r}} \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right]$,
$N_{d(a)}^{*}\left(y=0, N^{*}, T, r_{d(a)}, x\right) \equiv \frac{N^{*}}{\exp \left[\frac{\Delta E_{\operatorname{agn}(a g p)}\left(N^{*}, T, r_{\left.d(a)^{x}\right)}\right.}{k_{B^{T}}}\right]}$, and
$N_{d(a)}^{*}\left(y=W, T, r_{d(a)}, x\right) \equiv \frac{N_{d o(a 0)(w)}}{\exp \left[\frac{\Delta E_{\mathrm{agn}(\mathrm{agp})}\left(\mathrm{N}_{\mathrm{do}(\mathrm{ao})}\left(\mathrm{W}, \cdot \mathrm{T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})} \mathrm{x}\right)\right.}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}\right]}$,
where the apparent band gap narrowing $\Delta \mathrm{E}_{\text {agn(agp) }}$ is determined in Equations ($16 \mathrm{n}, 16 \mathrm{p}$), replacing N^{*} by $\rho_{\mathrm{d}(\mathrm{a})}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~W}\right)$.

Now, we can define the minority hole (minority electron) transport parameter $\mathrm{F}_{\mathrm{h}(\mathrm{e})}$, as:
$\mathrm{F}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \frac{\mathrm{N}^{*}}{\mathrm{D}_{\mathrm{h}(\mathrm{e})} \times \exp \left[\frac{\left.\Delta \mathrm{E}_{\mathrm{agn}(\mathrm{agp})}\right]}{\mathrm{k}_{\mathrm{h}} \mathrm{T}}\right]}\left(\mathrm{cm}^{-5} \times \mathrm{s}\right)$,
being related to the minority hole (electron) diffusion length, $\mathrm{L}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, as:
$\mathrm{L}_{\mathrm{h}(\mathrm{e})}^{-2}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=\left[\tau_{\mathrm{hE}(\mathrm{eE})} \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}\right]^{-1}=\left(\mathrm{C} \times \mathrm{F}_{\mathrm{h}(\mathrm{e})}\right)^{2}=\left(\mathrm{C} \times \frac{\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{*}}{\mathrm{D}_{\mathrm{h}(\mathrm{e})}}\right)^{2}=\left(\mathrm{C} \times \frac{\mathrm{n}_{\mathrm{in}(\mathrm{ip})}^{2}\left(\mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)}{\mathrm{p}_{\mathrm{o}}\left(\mathrm{n}_{\mathrm{o}}\right) \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}}\right)^{2}$, where the constant C was chosen to be equal to: $2.0893 \times 10^{-30}\left(\mathrm{~cm}^{4} / \mathrm{s}\right)$, and finally the minority hole (minority electron) lifetime $\tau_{\mathrm{hE}(\mathrm{eE})}$, by:

$$
\begin{equation*}
\tau_{\mathrm{hE}(\mathrm{eE})} \equiv \frac{1}{\mathrm{D}_{\mathrm{h}(\mathrm{e})} \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}^{-2}}=\frac{1}{\mathrm{D}_{\mathrm{h}(\mathrm{e})} \times\left(\mathrm{C} \times \mathrm{F}_{\mathrm{e}(\mathrm{~h})}\right)^{2}} . \tag{24}
\end{equation*}
$$

Then, under low-level injection, in the absence of external generation, and for the steady-state case, we can define the minority-h(e) density by:
$p_{o}(y)\left[n_{o}(y)\right] \equiv \frac{n_{\text {in }}^{2}(i p)}{N_{d(a)}^{*}\left(y=W, T, r_{d(a)}, x\right)}$,
and a normalized excess minority- $\mathrm{h}(\mathrm{e})$ density $\mathrm{u}(\mathrm{x})$ or a relative deviation between $p(y)[n(y)]$ and $p_{o}(y)\left[n_{o}(y)\right]$.
$\mathrm{u}(\mathrm{y}) \equiv \frac{\left.\mathrm{p}(\mathrm{y})[\mathrm{n}(\mathrm{y})]-\mathrm{p}_{\mathrm{o}}(\mathrm{y})\left[\mathrm{n}_{0}(\mathrm{y})\right]\right)}{\mathrm{p}_{\mathrm{o}}(\mathrm{y})\left[\mathrm{n}_{0}(\mathrm{y})\right]}$,
which must verify the two following boundary conditions as:
$\mathrm{u}(\mathrm{y}=0) \equiv \frac{-\mathrm{Jn}(\mathrm{y}=0)[\mathrm{e}(\mathrm{y}=0)]}{\operatorname{eS} \times \mathrm{p}_{0}(\mathrm{y}=0)\left[\mathrm{n}_{0}(\mathrm{y}=0)\right]}$,
$\mathrm{u}(\mathrm{y}=\mathrm{W})=\exp \left(\frac{\mathrm{v}}{\mathrm{n}_{\mathrm{I}(\mathrm{II})}(\mathrm{V}) \times \mathrm{V}_{\mathrm{T}}}\right)-1$.
Here, $\mathrm{n}_{\mathrm{I}(\mathrm{II})}(\mathrm{V})$ is the photovoltaic conversion factor, being determined later, $\mathrm{S}\left(\frac{\mathrm{cm}}{\mathrm{s}}\right)$ is the surface recombination velocity at the emitter contact, V is the applied voltage, $\mathrm{V}_{\mathrm{T}} \equiv\left(\mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{e}\right)$ is the thermal voltage, and the minority-hole (electron) current density $\mathrm{J}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{y}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$.

Further, from the Fick's law for minority hole (electron)-diffusion equations, one has ${ }^{[1,2]}$:

where $\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{\mathrm{F}}\left(\mathrm{y}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ is given in Eq. (22), $\mathrm{D}_{\mathrm{h}(\mathrm{e})}$ and $\mathrm{F}_{\mathrm{h}(\mathrm{e})}$ are determined respectively in Equations (19) and (23), and from the minority-hole (electron) continuity equation as: $N_{d(a)}^{*}\left(y, N^{*}, T, r_{d(a)}, x\right)$
$\frac{\mathrm{dJ}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}_{\left.\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}\right.}{\mathrm{dy}}=-\mathrm{e}(+\mathrm{e}) \times \mathrm{n}_{\mathrm{in}(\mathrm{p})}^{2} \times \frac{\mathrm{u}(\mathrm{y})}{\mathrm{F}_{\mathrm{h}(\mathrm{e})}(\mathrm{y}) \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}^{2}(\mathrm{y})}=-\mathrm{e}(+\mathrm{e}) \times \mathrm{n}_{\mathrm{in}(\mathrm{p})}^{2} \times \frac{\mathrm{u}(\mathrm{y})}{\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{*}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}_{\mathrm{r}} \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \tau_{\mathrm{hB}(\mathrm{eB})}}$,
Therefore, the following second-order differential equation is obtained:
$\frac{d^{2} u(y)}{d y^{2}}-\frac{d F_{h(e)}(y)}{d y} \times \frac{d u(y)}{d y}-\frac{u(y)}{L_{h(e)}^{2}(y)}=0$,
Then, taking into account the two above boundary conditions given in Eq. (26), one thus gets the general solution of this Eq. (29), as:
$\mathrm{u}(\mathrm{y})=\frac{\sinh (\mathrm{P}(\mathrm{y}))+\mathrm{I}(\mathrm{W}, \mathrm{S}) \times \cosh (\mathrm{P}(\mathrm{y}))}{\sinh (\mathrm{P}(\mathrm{W}))+\mathrm{I}(\mathrm{W}, \mathrm{S}) \times \cosh (\mathrm{P}(\mathrm{W}))} \times\left(\exp \left(\frac{\mathrm{V}}{\mathrm{n}_{\mathrm{I}(\mathrm{II})}(\mathrm{V}) \times \mathrm{V}_{\mathrm{T}}}\right)-1\right)$,
where the factor $I(W, S)$ is determined by: $D_{h(e)}\left(N_{d}, T, r_{d(a)}, x\right)$
$I\left(T, r_{d(a)}, x, W, S\right)=\frac{D_{h(e)}\left(y=W, N_{d o(a 0)}(W), T_{,} r_{d(a)}, x\right)}{S \times L_{h(e)}\left(y=W, N_{d o(a)}(W), T, r_{d(a)}, x\right)}$.
Further, since $\frac{\mathrm{dP}(\mathrm{y})}{\mathrm{dy}} \equiv \mathrm{C} \times \mathrm{F}_{\mathrm{h}(\mathrm{e})}(\mathrm{y})=\frac{1}{\mathrm{~L}_{\mathrm{h}(\mathrm{e})}(\mathrm{x})}, \mathrm{C}=2.0893 \times 10^{-30}\left(\mathrm{~cm}^{4} / \mathrm{s}\right)$, for the $\mathrm{X}(\mathrm{x})$-alloy, being an empirical parameter, chosen for each crystalline semiconductor, $\mathrm{P}(\mathrm{y})$ is thus found to be defined by: $\left.\mathrm{P}(\mathrm{y}) \equiv \int_{0}^{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{L}_{\mathrm{h}(\mathrm{e})}(\mathrm{y})}\right), 0 \leq \mathrm{y} \leq \mathrm{W}, \mathrm{P}(\mathrm{y}=\mathrm{W}) \equiv\left(\frac{1}{\mathrm{~W}} \times \int_{0}^{\mathrm{W}} \frac{\mathrm{dy}}{\mathrm{L}_{\mathrm{h}(\mathrm{e}(\mathrm{e}}(\mathrm{y})}\right) \times \mathrm{W} \equiv \frac{\mathrm{W}}{\mathrm{L}_{\mathrm{h}(\mathrm{e})}^{\mathrm{E}}(\mathrm{y})}=\frac{\mathrm{L}_{\mathrm{h}(\mathrm{e}}(\mathrm{y})}{\mathrm{L}_{\mathrm{h}(e)}^{\mathrm{E}}(\mathrm{y})} \times \frac{\mathrm{W}}{\mathrm{L}_{\mathrm{h}(())}(\mathrm{y})}$,
where $\mathrm{L}_{\mathrm{h}(\mathrm{e})}^{\mathrm{F}}(\mathrm{y})$ is the effective minority hole (minority electron) diffusion length. Further, the minority-hole (electron) current density injected into the $\mathrm{HD}[\mathrm{d}(\mathrm{a})-\mathrm{X}(\mathrm{x})$ alloy] ER is found to be given by: $J_{h(e)}\left(y, W, N^{*}, T, r_{d(a)}, x, S, V\right)=-J_{E n o}\left(y, W, N^{*}, T, r_{d}, x, S\right)\left[J_{E p o}\left(y, W, N^{*}, T, r_{a}, x, S\right)\right] \times\left(\exp \left(\frac{v}{n_{[t p)}(V) \times V_{T}}\right)-1\right)$,
where $\mathrm{J}_{\mathrm{Eno} \text { (Eро) }}$ is the saturation minority hole (minority electron) current density,
$\mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}\left(\mathrm{y}, \mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S}\right)=\frac{\mathrm{en}_{\operatorname{in}(\mathrm{ip})}^{2} \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}}{\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{*}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}} \times \frac{\cosh (\mathrm{P}(\mathrm{x}))+\mathrm{I}(\mathrm{W}, \mathrm{S}) \times \sinh (\mathrm{P}(\mathrm{x}))}{\sinh (\mathrm{P}(\mathrm{W}))+\mathrm{I}(\mathrm{W}, \mathrm{S}) \times \cosh (\mathrm{P}(\mathrm{W}))}$.
In the following, we will denote $\mathrm{P}(\mathrm{W})$ and $\mathrm{I}(\mathrm{W}, \mathrm{S})$ by P and I , for a simplicity. So, Eq. (30) gives:
$\mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}\left(\mathrm{y}=0, W, \mathrm{~N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S}\right)=\frac{\mathrm{en}_{\text {in(ip) }}^{2} \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}}{\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{*}\left(\mathrm{y}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}} \times \frac{1}{\sinh (\mathrm{P})+\mathrm{I} \times \cosh (\mathrm{P})}$,
$J_{E n o(E p o)}\left(\mathrm{y}=\mathrm{W}, \mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S}\right)=\frac{\mathrm{en}_{\mathrm{in}(\mathrm{ip})}^{2} \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}}{\mathrm{N}_{\mathrm{d}(\mathrm{a})}^{*}\left(\mathrm{y}=\mathrm{W}, \mathrm{N}^{*}, \mathrm{Tr}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}} \times \frac{\cosh (\mathrm{p})+\mathrm{I} \times \sinh (\mathrm{P})}{\sinh (\mathrm{P})+\mathrm{I} \times \cosh (\mathrm{P})}$,
and then,

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region
by:
$\mathrm{Q}_{\mathrm{h}(\mathrm{e})}^{\mathrm{w}}\left(\mathrm{y}=\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \int_{0}^{\mathrm{W}}+\mathrm{e}(-\mathrm{e}) \times \mathrm{u}(\mathrm{y}) \times \mathrm{p}_{\mathrm{o}}(\mathrm{y})\left[\mathrm{n}_{\mathrm{o}}(\mathrm{y})\right] \times \frac{\tau_{\mathrm{hE}(\mathrm{eE})}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}{\tau_{\mathrm{hE}(\mathrm{eE})}\left(\mathrm{p}_{\mathrm{d}(\mathrm{a})}(\mathrm{x}), \mathrm{T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)} \mathrm{dy}, \quad$ and the effective minority hole (minority electron) transit time [htt(ett)] by:
 Equations (24, 31), one obtains:

Now, some important results can be obtained and discussed below.
As $\mathrm{P} \ll 1\left(\right.$ or $\left.\mathrm{W} \ll \mathrm{L}_{\mathrm{h}(\mathrm{e})}\right)$ and $\mathrm{S} \rightarrow \infty, \mathrm{I} \equiv \mathrm{I}(\mathrm{W}, \mathrm{S})=\frac{\mathrm{D}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{N}_{\mathrm{do}((\mathrm{ao})}(\mathrm{W}), \mathrm{T}_{,} \mathrm{r}_{\mathrm{d}(\mathrm{a})} \mathrm{X}\right)}{\mathrm{S} \times \mathrm{L}_{\mathrm{h}(\mathrm{e}(\mathrm{e})}\left(\mathrm{N}_{\mathrm{do}(\mathrm{ao})}(\mathrm{W}), \mathrm{T}, \mathrm{r}_{\mathrm{d}(a))^{\mathrm{x}}}^{\mathrm{x}}\right.} \rightarrow 0$, from Eq.
 case, where, from Eq. (36), one obtains:
$\mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}\left(\mathrm{y}=\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S} \rightarrow \infty\right) \rightarrow \frac{\mathrm{en}_{\text {in(ip) }}^{2} \times \mathrm{D}_{\mathrm{h}(\mathrm{e})}}{\mathrm{N}_{\mathrm{d}(\mathrm{e})}^{\bar{*}\left(\mathrm{y}=W, \mathrm{~N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})} \times \mathrm{x}\right) \times \mathrm{L}_{\mathrm{L}(\mathrm{e})}} \times \frac{1}{\mathrm{P}(\mathrm{W})} ~}$
Further, as $\quad \mathrm{P} \gg 1 \quad$ (or $\mathrm{W} \gg \mathrm{L}_{\mathrm{h}(\mathrm{e})}$) and $\mathrm{S} \rightarrow 0$, $\mathrm{I} \equiv \mathrm{I}\left(\mathrm{y}=\mathrm{W}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S}\right)=\frac{\mathrm{D}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{N}_{\mathrm{do}(\mathrm{ao})}(\mathrm{W}), \mathrm{T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})} \mathrm{x}\right)}{\mathrm{S} \times \mathrm{L}_{\mathrm{h}(\mathrm{e})}\left(\mathrm{N}_{\mathrm{do}(\mathrm{ao})}(\mathrm{W}), \mathrm{T}, \mathrm{r}_{\mathrm{d}(\mathrm{a}) \mathrm{x})}\right.} \rightarrow \infty, \quad$ and \quad from $\quad \mathrm{Eq} . \quad$ (38) \quad one has: $\frac{\left.\tau_{h t t(e t t)}^{*}\right)\left(\mathrm{y}=\mathrm{W}, \mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})} \mathrm{a}_{\mathrm{x}}, \mathrm{S}\right)}{\tau_{\mathrm{hE}(\mathrm{eE})}} \rightarrow 1$, suggesting a completely opaque emitter region (COER)-case, where, from Eq. (36), one gets:

In summary, in the two $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}(\mathrm{x})$-alloy junction solar cells, the dark carrierminority saturation current density $\mathrm{JoI}_{\text {(oif) }}$, defined in Eq. (17), is now rewritten as:
$\mathrm{I}_{\mathrm{ol}(\mathrm{OH})}\left(\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{X}, \mathrm{S} ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}\right) \equiv \mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}\left(\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{X}, \mathrm{S}\right)+\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})}\left(\mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}\right)$,
where $\mathrm{J}_{\mathrm{Eno}(\mathrm{Epo})}$ and $\mathrm{J}_{\mathrm{Bpo}(\mathrm{Bno})}$ are determined respectively in Equations $(36,18)$.

PHOTOVOLTAIC CONVERSION EFFECT AT 300K

Here, in the $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}(\mathrm{x})$-alloy junction solar cells at $\mathrm{T}=300 \mathrm{~K}$, denoted respectively by $\mathrm{I}(\mathrm{II})$, and for physical conditions, respectively, as:
$\mathrm{W}=15 \mu \mathrm{~m}, \mathrm{~N}=10^{20} \mathrm{~cm}^{-3}\left(10^{20} \mathrm{~cm}^{-3}\right), \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S}=100\left(\frac{\mathrm{~cm}}{\mathrm{~s}}\right) ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}=10^{17} \mathrm{~cm}^{-3}, \mathrm{r}_{\mathrm{a}(\mathrm{d})} \mathrm{X}$,
we propose, at given open circuit voltages: $\mathrm{V}_{\text {ocI1(ocI2) }}$ and $V_{\text {ocII1(ocII2) }}$, the corresponding data of the short circuit current density $\mathrm{J}_{\text {scI(II) }}$, in order to formulate our following treatment method of two fix points, as:
at $V_{\text {ocI1 }(\mathrm{ocI} 2)}(\mathrm{V})=0.980(1.1272), \mathrm{J}_{\mathrm{scl1}(\mathrm{scI} 2)}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)=27.06$ (29.76),
at $\mathrm{V}_{\text {ocII1 }(\mathrm{ocII2})}(\mathrm{V})=0.980(1.03), \mathrm{J}_{\text {scII1 (scII2) }}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)=24.2$ (29.84).

Now, we define the net current density J at $\mathrm{T}=300 \mathrm{~K}$, obtained for the infinite shunt resistance, and expressed as a function of the applied voltage V , flowing through the $n^{+}\left(p^{+}\right)-p(n) X(x)$-alloy junction of solar cells, as:
$\mathrm{I}(\mathrm{v}) \equiv \mathrm{J}_{\mathrm{ph} .}(\mathrm{v})-\mathrm{J}_{\mathrm{ol}(\mathrm{oll})} \times\left(\mathrm{e}^{\mathrm{x}_{\mathrm{I}(\mathrm{II})}(\mathrm{V})}-1\right), \mathrm{X}_{\mathrm{I}(\mathrm{II})}(\mathrm{V}) \equiv \frac{\mathrm{v}}{\mathrm{n}_{\mathrm{I}(\mathrm{II})}(\mathrm{V}) \times \mathrm{V}_{\mathrm{T}}}, \mathrm{X}_{\mathrm{I}(\mathrm{II})}(\mathrm{V}) \equiv \frac{\mathrm{V}}{\mathrm{n}_{\mathrm{I}(\mathrm{I})}(\mathrm{V}) \times \mathrm{V}_{\mathrm{T}}}$,
where the function $n_{\mathrm{I}_{\text {(II) }}}(\mathrm{V})$ is the photovoltaic conversion factor (PVCF), noting that as $\mathrm{V}=\mathrm{V}_{\mathrm{oc}}$, being the open circuit voltage, $\mathrm{J}\left(\mathrm{V}=\mathrm{V}_{\mathrm{oc}}\right)=0$, the photocurrent density is defined by: $J_{\text {ph. }}\left(V=V_{\text {oc }}\right) \equiv J_{\text {scl(scII) }}\left(W, N^{*}, T, r_{d(a)}, x, S ; N_{a(d)}, T, r_{a(d)}, x, V_{o c}\right)$, for $V_{o c} \geq V_{\text {ocI1 (ocII1) }}$.

Therefore, the photovoltaic conversion effect occurs, according to:

Here, one remarks that (i) for a given V_{oc}, both $\mathrm{n}_{\mathrm{I} \text { (II) }}$ and $\mathrm{J}_{\mathrm{oI}(\mathrm{II})}$ have the same variations, obtained in the same physical conditions, as observed in the following calculation, (ii) the function $\left(\mathrm{e}^{\mathrm{X}_{\mathrm{I}(\mathrm{II})}\left(\mathrm{V}_{\text {oc }}\right)}-1\right)$ or the PVCF, $\mathrm{n}_{\mathrm{I}(\mathrm{II})}$, representing the photovoltaic conversion effect, converts the light, represented by $\mathrm{J}_{\mathrm{scI}(\text { sciI) }}$, into the electricity, by $\mathrm{J}_{\mathrm{oI} \text { (oir) }}$, and finally, for given $\left(\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S} ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}, \mathrm{V}_{\mathrm{oc}}\right)$-values, $\mathrm{n}_{\mathrm{I}(\mathrm{II})}\left(\mathrm{V}_{\mathrm{oc}}\right)$ is determined.

Now, for $V_{\text {oc }} \geq V_{\text {ocI1(ocII1) }}$, one can propose the general expressions for the PVCF, in order to get exactly the values of $n_{\text {I1(II1) }}\left(\mathrm{V}_{\text {ocI1 (ocII1) }}\right)$ and $n_{\text {I2(II2) }}\left(\mathrm{V}_{\text {ocI2(ocII2) }}\right)$, as functions of $V_{o c}$,

where, for example, the values of $\alpha(\beta)$, obtained for $x=(0,0.5$ and 1$)$, will be reported in Tables 3 n and 5 p , for these $\left[\mathrm{X}(\mathrm{x}) \equiv \mathrm{GaAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\right]$-alloy junctions.

So, one can determine the general expressions for the fill factors, as:
$\mathrm{F}_{\mathrm{I}(\mathrm{II})}\left(\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S} ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}, \mathrm{V}_{\mathrm{oc}}\right)=\frac{\mathrm{X}_{\mathrm{I}(\mathrm{II})}\left(\mathrm{V}_{\mathrm{oc}}\right)-\ln \left[\mathrm{X}_{\mathrm{I}(\mathrm{II}}\left(\mathrm{V}_{\text {oc }}\right)+0.72\right]}{\mathrm{X}_{\mathrm{I}(\mathrm{II})}\left(\mathrm{V}_{\mathrm{oc})}\right)+1}$.
Finally, the efficiency $\eta_{I(I I)}$ can be defined in the $\mathrm{n}^{+}\left(\mathrm{p}^{+}\right)-\mathrm{p}(\mathrm{n}) \mathrm{X}(\mathrm{x})$ alloy-junction solar cells, by:
$\eta_{\mathrm{I}(\mathrm{II})}\left(\mathrm{W}, \mathrm{N}^{*}, \mathrm{~T}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{S} ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{T}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}, \mathrm{V}_{\mathrm{oc}}\right) \equiv \frac{\mathrm{JscI}\left(\mathrm{scIII} \times \mathrm{V}_{\mathrm{oc}} \times \mathrm{F}_{\mathrm{I}(\mathrm{II})}\right.}{\mathrm{P}_{\mathrm{in}} .}$
being assumed to be obtained at 1 sun illumination or at AM1.5G spectrum ($\mathrm{P}_{\text {in. }}=0.100 \frac{\mathrm{w}}{\mathrm{cm}^{2}}$).

It should be noted that the maximal values of $\eta_{\text {IIII }}, \eta_{\text {Imax.(IImax.) }}$, are obtained at the corresponding ones of $\mathrm{V}_{\text {oc }}=\mathrm{V}_{\text {ocl(ocII) }}$, at
 5p in Appendix 1, being marked in bold. Further, from the well-known Carnot's theorem, being obtained by the second principle in thermodynamics, or by the entropy law, the maximum efficiency of a heat engine operating between hot (\mathbf{H}) and cold (\mathbf{C}) reservoirs is the ratio of the temperature difference between the reservoirs, $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{G}}, \mathrm{T}_{\mathrm{G}} \equiv \mathrm{T}=300 \mathrm{~K}$, to the H -reservoir temperature, T_{H}, expressed as:
$\eta_{\mathrm{II}(\mathrm{II})}\left(\mathrm{T}, \mathrm{V}_{\text {oc }}\right) \leq \eta_{\text {Imax.(IImax.) }}\left(\mathrm{T}, \mathrm{V}_{\text {oc }}=\mathrm{V}_{\text {ocI(ocII) }}\right) \equiv \eta_{\text {Carnot }}=\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}$,
for a simplicity, noting that both $\eta_{\text {Imax.(IImax.) }}$ and T_{H} depend on $\left(W, N^{*}, T, r_{d(a)}, \mathrm{X}, \mathrm{S} ; \mathrm{N}_{\mathrm{a}(\mathrm{d})}, \mathrm{r}_{\mathrm{a}(\mathrm{d})}, \mathrm{x}, \mathrm{V}_{\text {ocil(ocrl) }}\right)$-parameters.

NUMERICAL RESULTS AND CONCLUDING REMARKS

We will respectively consider the two following cases of $n^{+}\left(p^{+}\right)-p(n)$-junctions such as: HD (As; Sn) X(x) alloy ER - LD (Mg ; Cd) X(x) - alloy BR - case, according to: $2\left(\mathrm{n}^{+} \mathrm{p}\right)$ junctions denoted by: $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$, and
HD (Mg ; Cd) X (x) alloy ER - LD (As; Sn) X(x) - alloy BR - case, according to: $2\left(\mathrm{p}^{+} \mathrm{n}\right)$ junctions denoted by: $\left(\mathrm{Mg}^{+} \mathrm{As}, \mathrm{Cd}^{+} \mathrm{Sn}\right)$.

Now, by using the physical conditions, given in Eq. (42), we can determine various photovoltaic conversion coefficients as follows.

Firs case: HD [As; Sn] X(x) - Alloy ER - LD [Mg; Cd] X(x) - Alloy BR
Here, there are the $2\left(\mathrm{n}^{+} \mathrm{p}\right)-\mathrm{X}(\mathrm{x})$ junctions, being denoted by: $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$.
Then, the numerical results of $\frac{\tau_{\mathrm{Ltt}}^{\bar{W}}}{\tau_{\mathrm{hE}}}, \mathrm{J}_{\mathrm{Bpo}}, \mathrm{J}_{\mathrm{Eno}}$ and J_{oI}, are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 2n in Appendix 1. Further, those of $n_{I}, J_{s c I}, F_{I}, \eta_{I}$, and T_{H}, are computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 3n in Appendix 1.

Tables 2n and 3n in Appendix 1
Second case: HD [Mg; Cd] X(x) - Alloy ER - LD [As,Sn] X(x) - Alloy BR
Here, there are $2\left(\mathrm{p}^{+} \mathrm{n}\right)-\mathrm{X}(\mathrm{x})$-junctions, being denoted by: $\left(\mathrm{Mg}^{+} \mathrm{As}, \mathrm{Cd}^{+} \mathrm{Sn}\right)$.

Then, the numerical results of $\frac{\tau_{\mathrm{ett}}^{\mathrm{E}}}{\tau_{\mathrm{eE}}}, \mathrm{J}_{\mathrm{Bno}}, \mathrm{J}_{\mathrm{Epo}}$ and $\mathrm{J}_{\mathrm{oII}}$, are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 4p in Appendix 1. Further, those of $n_{\text {II }}, J_{\text {scII }}, F_{\text {II }}, \eta_{\text {II }}$, and T_{H}, are computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 5p in Appendix 1.

Tables 4p and 5p in Appendix 1

Finally, some concluding remarks are obtained and discussed as follows.
(1) In Table 3n, for the $\mathrm{n}^{+}-\mathrm{p} \mathrm{GaP} \mathrm{P}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy junction solar cell and for $\mathrm{r}_{\mathrm{Sn}(\mathrm{Cd})^{-}}$ radius, one obtains with increasing $\mathrm{x}=(0,0.5,1): \eta_{\text {Imax. }}(\Delta)=\mathbf{3 2 . 8 3} \%, 31.96 \%, 31.15 \%$, according to $\mathrm{T}_{\mathrm{H}}(\searrow)=\mathbf{4 4 6 . 6 \mathrm { K }}, 440.9 \mathrm{~K}, 435.7 \mathrm{~K}$, at $\quad \mathrm{V}_{\text {ocI }}=\mathbf{1 . 0 6} \mathrm{V}, 1.06 \mathrm{~V}, 1.07 \mathrm{~V}$, respectively.
(2) In Table 5p, for the $\mathrm{p}^{+}-\mathrm{n} \mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy junction solar cell and for $\mathrm{r}_{\mathrm{Cd}(\mathrm{Sn})^{-}}$ radius, one obtains with increasing $\mathrm{x}=(0,0.5,1): \eta_{\text {IImax. }}(\nearrow)=32.51 \%, 32.51 \%, \mathbf{3 3 . 0 7} \%$, according to $\mathrm{T}_{\mathrm{H}}(\nearrow)=444.5 \mathrm{~K}, 444.5 \mathrm{~K}, 448.2 \mathrm{~K}$, at $\mathrm{V}_{\text {ocII }}(\mathrm{V})\left[>\mathrm{V}_{\text {ocI }}(\mathrm{V})\right]=1.17 \mathrm{~V}, 1.18 \mathrm{~V}, 1.20 \mathrm{~V}$, respectively, suggesting that such $\eta_{\text {Imax.(IImax.) }}$-and- T_{H} variations depend on $\mathrm{V}_{\text {ocII }}(\mathrm{V})\left[>\mathrm{V}_{\text {ocI }}(\mathrm{V})\right]$ - ones.
(3) Finally, as noted in above remarks (1) and (2), for $\mathrm{x}=1$, the $\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy becomes the GaAs-one, and therefore, $\eta_{\text {Imax }}=31.15 \%$ and $\eta_{\text {IImax }}=33.07 \%$, which can be compared with the corresponding results obtained by Moon et al. ${ }^{[6]}$ and Green et al. ${ }^{[4]}$ for the singlejunction GaAs thin-film solar cell, 22.08% and 29.71%, respectively, suggesting that in order to obtain the highest efficiencies, the $\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy junction solar cells could be chosen rather than the crystalline GaAs-junction solar cell.

REFERENCES

1. H. Van Cong, "New Critical Impurity Densities in Metal-Insulator Transition, Obtained in $n(p)$-Type Degenerate $\left[\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Te}_{\mathrm{x}}, \mathrm{Sb}_{\mathrm{x}}\right)\right]$-Crystalline Alloys, being just That of Carriers Localized in Exponential Band Tails. (IV)", World Journal of Engineering Research and Technology, 2024; 10(5): XX-XX.
2. H. Van-Cong, "Maximal Efficiencies in New Single $\operatorname{GaAs}(1-\mathrm{x}) \mathrm{P}(\mathrm{x})$ - Alloy Junction Solar Cells at 300 K". European Journal of Theoretical and Applied Sciences, 2024; 2(1): 394-414.
3. H. Van Cong, "Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures," American Journal of Modern Physics, 2018; 7: 136-165; "Accurate expressions for optical coefficients, due to the impurity-size effect, and obtained in $\mathrm{n}(\mathrm{p})$ type degenerate Si crystals, taking into account their correct asymptotic behavior, as the photon energy E $(\rightarrow \infty)$," SCIREA J. Phys., 2023; 8: 172-197.
4. M.A. Green et al., "Solar cell efficiency tables (version 60)", Prog. Photovolt. Res. \& Appl., 2022; 30: 687-701.
5. C. Kittel, "Introduction to Solid State Physics", Wiley, New York, 1976; 84-100.
6. S. Moon et al., "Highly efficient single GaAs thin-film solar cell on flexible substrate", Sci. Rep., 2016; 6: 30107.
7. H. Van Cong et al., "Optical bandgap in various impurity-Si systems from the metalinsulator transition study", Physica B, 2014; 436: 130-139.
8. H. Van Cong \& G. Debiais, "A simple accurate expression of the reduced Fermi energy for any reduced carrier density", J. Appl. Phys., 1993; 73: 1545-1546.
9. H. Van Cong et al., "Size effect on different impurity levels in semiconductors", Solid State Communications, 1984; 49: 697-699.
10. H. Van Cong et al., "Optical bandgap in various impurity-Si systems from the metalinsulator transition study," Physica B, 2014; 436: 130-139; H. Stupp et al., Phys. Rev. Lett., 1993; 71: 2634; P. Dai et al., Phys. Rev. B, 1992; 45: 3984.
11. H. Van Cong, "Accurate expressions for optical coefficients, given in $n(p)$-type degenerate Ge-crystals, due to the impurity-size effect, and obtained from an improved Forouhi-Bloomer parameterization model," SCIREA J. Phys., 2023; 8: 255-279.

Cong.

APPENDIX 1

Table 1: In the GaP $_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy the numerical results of $\mathrm{B}_{\mathrm{do}(\mathrm{ao})}, \varepsilon, \mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}, \mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$, $\mathrm{E}_{\mathrm{gin}(\mathrm{gip})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{T}\right)$, and $\eta_{\mathrm{n}(\mathrm{p})}(\mathrm{u}), \mathrm{u}\left(\mathrm{N}^{*}, \mathrm{~T}, \mathrm{x}\right) \equiv \frac{\mathrm{N}^{*}}{\mathrm{~N}_{\mathrm{c}(\mathrm{y})}(\mathrm{T}, \mathrm{x})}$, are computed for physical conditions, given in Eq. (42), using Equations (5), (8a, 8b), (9a), (10), and (12), respectively. Here, on notes that: (i) $\mathrm{N}=10^{20} \mathrm{~cm}^{-3}$ and $\mathrm{T}=300 \mathrm{~K}$, (ii) $\mathrm{N}^{*} \equiv \mathrm{~N}^{*}\left(\mathrm{~N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, given in Eq. (9d), and finally (iii) in the limiting conditions: these numerical results are reduced to those given in GaP-crystal for $\mathrm{x}=0$, and to those given in the GaAs-alloy for $\mathrm{x}=1$.

$\varepsilon\left(r_{a}, \mathrm{X}\right)>$		11．1，12．115， 13.13		10．5002，11．4604， 12.42055	
$\mathrm{E}_{\mathrm{gpo}}\left(\mathrm{rag}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV} \quad 入$		1．796，	1．658， 1.52	1．8024849， 1.66	1，1．5226974
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{ra}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} 7$		9．5926026， 3	．6514435， 1.142563	11．332043， 4.313	1，1．3497457
$\mathrm{E}_{\text {gip }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}, \mathrm{T}\right)$ in eV 7		1．726，	1．5747， 1.4235	1．7325，	79， 1.4262
$\eta_{p} \gg 1$（degenerate case）	\pm	5．9036，	7．6634， 10.4814	5．8328，	298， 10.4671
Acceptor	In			Cd	
$\mathrm{ram}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$		0.144		0.148	
$x \quad 7$		0,	0．5， 1	$0, \quad 0$.	
$\varepsilon\left(r_{a}, \mathrm{X}\right) \searrow$		10．143959，	11．0715， 11.999115	9．7367823， 10.	713，11．51747
$\mathrm{E}_{\mathrm{gpo}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV}$ ，		$1.8068933,1.665233,1.5245311$		$1.8125359,1.66898,1.5268781$	
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{rag}^{\prime}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$		12．568487，4．7842197， 1.4970169		14．212125，5．4098739，1．6927886	
$\mathrm{E}_{\text {gip }}\left(\mathrm{ram}_{\mathrm{a}}, \mathrm{X}\right.$, ）in eV \quad ，		1．7369，	1．582， 1.428	1．7425，	1．5857， 1.4304
$\eta_{p} \gg 1$（degenerate case）	\pm	5．7822，	$7.6059,10.4570$	5．7146，	7．5741， 10.4434

Table 2n：In the HD［（As； Sn$)-$ GaP $_{1-\mathrm{x}} \mathbf{A} \mathbf{A s}_{\mathbf{x}}$－alloy］ER－LD［（Mg；Cd）－GaP $\mathbf{1 - x} \mathbf{A} \mathbf{A s}_{\mathrm{x}}$－alloy］BR，for physical conditions given in Eq．（42）and for a given x ，our numerical results of $\frac{\tau_{\mathrm{htt}}^{\mathrm{tr}}}{\tau_{\mathrm{hE}}}, \mathrm{J}_{\mathrm{Bpo}}, \mathrm{J}_{\mathrm{Eno}}$ and J_{ol} ，are computed，using Equations（38），（18），（36）and（41），respectively，noting that J_{ol} decreases strongly with increasing $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$－radius for given x ，but it increases strongly with increasing x for given $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$－radius，being new results．
$\mathrm{n}^{+} \mathrm{p} \quad \mathrm{As}^{+} \mathrm{Mg} \quad \mathrm{Sn}^{+} \mathrm{Cd}$

Here， $\mathbf{x}=\mathbf{0}$ for the $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$－junctions，and from Eq．（38），one obtains：

\qquad
$\begin{array}{ll}\mathrm{J}_{\mathrm{ppo}} \text { in } 10^{-24}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \text { 〕 } & 3.7256 \\ 3.4547\end{array}$
$\mathrm{J}_{\text {Eno }}$ in $10^{-29}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow \quad 2.4794 \quad 0.1204$
Joi in $10^{-24}\left(\mathrm{~A} / \mathrm{cm}^{2}\right)$ 】 $3.7256 \quad 3.4547$

Here, $\mathbf{x}=\mathbf{0 . 5}$ for the $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$-junctions, and from Eq. (38), one obtains: $\frac{\tau_{\mathrm{h}}^{\mathrm{t}}}{\tau_{\mathrm{hs}}}=(0,0)$ suggesting a completely transparent condition.
\qquad
$\begin{array}{lll}\mathrm{J}_{\mathrm{Bpo}} \text { in } 10^{-22}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow & 6.9673 & 6.4608\end{array}$
$\mathrm{J}_{\mathrm{Eno}}$ in $10^{-26}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow \quad 1.6784 \quad 0.0176$
$\begin{array}{lll}\text { Joi } \text { in } 10^{-22}\left(A / \mathrm{cm}^{2}\right) \searrow & 6.9675 & 6.4608\end{array}$

Here, $\mathbf{x}=\mathbf{1}$ for the $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$-junctions, and from Eq. (38), one obtains: $\frac{\tau_{\text {ht }}^{*}}{\tau_{\text {hs }}}=(0,0)$ suggesting a completely transparent condition.
\qquad
$\begin{array}{lll}\mathrm{J}_{\mathrm{Bpo}} \text { in } 10^{-20}\left(\mathrm{~A} / \mathrm{cm}^{2}\right)> & 9.4699 & 8.7814\end{array}$
$\mathrm{J}_{\text {Eno }}$ in $10^{-22}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow \quad 8.9188 \quad 0.0017$
$\begin{array}{lll}\text { Joi in } 10^{-20}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow & 9.5592 & 8.7814\end{array}$

Table 3n: In the HD [(As; Sn)- $\mathbf{G a P}_{1-\mathrm{x}} \mathbf{A s}_{\mathrm{x}}$-alloy] ER-LD[(Mg; Cd)-GaP $\mathbf{1 - x} \mathbf{A s}_{\mathrm{s}_{\mathbf{x}}}$-alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of $n_{I}, J_{\text {scl }}, F_{\mathrm{I}}, \eta_{\mathrm{I}}$, and T_{H}, are computed, using Equations ($46,45,47,48,49$), respectively, noting that both $\eta_{\text {Imax. }}$ and T_{H}, marked in bold, increase with increasing x for given $r_{d(a)}$, being new results.

$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	n_{I}	$\mathrm{J}_{\mathrm{scl}}\left(\frac{\mathrm{mA}}{\mathrm{m}^{2}}\right)$) $\eta_{\mathrm{I}}(\%)$	
Here, $\mathbf{x}=\mathbf{0}$. For the ($\left.\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$ junctions, the value of $\boldsymbol{\alpha}$ given in Eq. (46) is 1.0805.				
$\mathrm{n}^{+} \mathrm{p}$	$\mathrm{As}^{+} \mathrm{Mg} ; \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg}$ S $\mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg} ; \mathrm{Sn}^{+} \mathrm{Cd}$
0.980	0.753; 0.752	27.06; 27.06	90.39; 90.40	23.97; 23.97
1.05	0.803; 0.802	34.60; 34.47	90.43; 90.44	32.72; 32.73
1.06	0.811; 0.809	34.24; 34.25	90.43; 90.44	32.82; 32.83
			$\mathrm{V}_{\text {ocl }}=1.06 \mathrm{~V}$	446.5; 446.6 $=\mathrm{T}_{\mathrm{H}}(\mathrm{K})$
1.07	0.818; 0.817	33.86; 33.87	90.42; 90.43	32.76; 32.78
1.1272	0.864; 0.863	29.76; 29.76	90.40; 90.42	30.33; 30.34
2	1.656; 1.653	0.728; 0.724	89.82; 89.83	1.308; 1.301

Here, $\mathbf{x}=\mathbf{0 . 5}$. For the $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$ junctions, the value of $\boldsymbol{\alpha}$ given in Eq. (46) is $\mathbf{1 . 0 8 1 2 6}$.

$\mathrm{n}^{+} \mathrm{p}$	$\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg} \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg} \mathrm{Sn}^{+} \mathrm{Cd}$
0.980	0.840; 0.839	27.06; 27.06	89.53; 89.55	23.74; 23.75
1.05	0.896; 0.894	33.82; 33.83	89.57; 89.59	31.80; 31.82
1.06	0.904; 0.809	33.64; 34.25	89.57; 89.59	31.94; 31.96
			$\mathrm{v}_{\text {oci }}=1.06 \mathrm{~V}$	440.8; 440.9 $=\mathrm{T}_{\mathrm{H}}(\mathrm{K})$
1.07	0.913; 0.817	33.32; 33.87	89.57; 89.59	31.93; 31.95
1.1272	0.964; 0.863	29.75; 29.76	89.55; 89.56	30.03; 30.04
2	1.847; 1.653	1.064; 0.724	88.92; 88.93	1.893; 1.883

Here, $\mathbf{x}=\mathbf{1}$. For the $\left(\mathrm{As}^{+} \mathrm{Mg}, \mathrm{Sn}^{+} \mathrm{Cd}\right)$ junctions, the value of $\boldsymbol{\alpha}$ given in Eq. (46) is $\mathbf{1 . 0 8 2 2}$.

$\mathrm{n}^{+} \mathrm{p}$	$\mathrm{As}^{+} \mathrm{Mg} ; \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg} \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{Ass}^{+} \mathrm{Mg} \cdot \mathrm{Sn}^{+} \mathrm{Cd}$	$\mathrm{As}^{+} \mathrm{Mg} ; \mathrm{Sn}^{+} \mathrm{Cd}$
0.980	0.943; 0.941	27.06; 27.06	88.56; 88.58	23.49; 23.49
1.06	1.015; 1.013	33.10; 33.11	88.60; 88.62	31.09; 31.11
1.07	1.025; 1.023	32.84; 32.85	88.60; 88.62	31.13; 31.15
			$\mathrm{V}_{\text {ocl }}=1.07 \mathrm{~V}$	435.6; 435.7 $=\mathrm{T}_{\mathrm{H}}(\mathrm{K})$
1.08	1.034; 1.033	32.47; 32.49	88.60; 88.62	31.07; 31.09
1.1272	1.082; 1.080	29.76; 29.77	88.58; 88.60	29.72; 29.73
2	2.073; 2.069	1.522; 1.512	87.89; 87.91	2.675; 2.659

Table 4p: In the HD [(Mg; Cd)-GaP $\mathbf{1 - x} \mathbf{A s}_{\mathbf{x}}$-alloy] ER-LD[(As; Sn)-GaP $\mathbf{1 - x} \mathbf{A s}_{\mathrm{s}_{\mathrm{x}}}$-alloy] BR, for physical conditions given in Eq. (42) and for a given x , our numerical results of $\frac{\tau_{\mathrm{ett}}^{\mathrm{z}}}{\tau_{\text {RR }}}, J_{\mathrm{Bno}}, \mathrm{J}_{\mathrm{Epo}}$ and $\mathrm{J}_{\text {oil }}$, are computed, using Equations (38), (18), (36) and (41), respectively, noting that $\mathrm{J}_{\text {oil }}$ decreases strongly with increasing $\mathrm{r}_{\mathrm{a}(\mathrm{d})}$-radius for given x , but it increases strongly with increasing x for given $\mathrm{r}_{\mathrm{a}(\mathrm{d})}$-radius, being new results.

```
p+n Mg*As}\mp@subsup{\textrm{Cd}}{}{+}\textrm{Sn
```

Here, $\mathbf{x}=\mathbf{0}$, and for the $\left(\mathrm{Mg}^{+} A s, \mathrm{Cd}^{+} \mathrm{Sn}\right)$-junctions and from Eq. (34), one obtains: $\frac{\tau_{\mathrm{stI}}^{*}}{\tau_{\mathrm{sE}}^{*}}=(0,0)$ suggesting a completely transparent condition.
\qquad
$\mathrm{J}_{\mathrm{Bno}}$ in $10^{-24}\left(\mathrm{~A} / \mathrm{cm}^{2}\right)>\quad 1.6147 \quad 0.8348$
$\begin{array}{lll}\text { Eвро }^{\text {in }} 10^{-27}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow & 1.2926 & 0.7831\end{array}$
Joif in $10^{-24}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow \quad 1.6160 \quad 0.8356$

Here, $\mathbf{x}=\mathbf{0 . 5}$, and for the $\left(\mathrm{Mg}^{+} A s, \mathrm{Cd}^{+} \mathrm{Sn}\right)$-junctions and from Eq. (34), one obtains: $\frac{\tau_{s, t}^{*}}{\tau_{\mathrm{sE}}}=(0,0)$ suggesting a completely transparent condition.
\qquad

J Bno in $10^{-22}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	2.6082	1.5611
$\mathrm{~J}_{\text {Epo }}$ in $10^{-25}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	1.2570	0.7875
JoII in $10^{-22}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	2.6095	1.5619

Here, $\mathbf{x}=1$, and for the $\left(\mathrm{Mg}^{+} A s, \mathrm{Cd}^{+} \mathrm{Sn}\right)$ junctions and from Eq. (34), one obtains: $\tau_{\tau_{\mathrm{sE}}}^{\tau_{\mathrm{st}}^{\mathrm{t}}}=(0,0)$ suggesting a completely transparent condition.
\qquad

$\mathrm{J}_{\text {Eno }}$ in $10^{-20}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	3.1831	2.1219
$\mathrm{~J}_{\text {Epo }}$ in $10^{-24}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	7.7128	4.7505
Joil in $10^{-20}\left(\mathrm{~A} / \mathrm{cm}^{2}\right) \searrow$	3.1839	2.1223

Table 5p: In the HD [(Mg; Cd)-GaP 1-x As_{x}-alloy] ER-LD[(As; Sn$)-\mathrm{GaP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}$-alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of $n_{\text {II }}, \mathrm{J}_{\text {scII }}, \mathrm{F}_{\mathrm{II}}$, $\eta_{I I}$, and T_{H}, are computed, using Equations (46, 45, 47, 48, 49), respectively, noting that both $\eta_{\text {IImax. }}$ and T_{H}, marked in bold, increase with increasing x for given $\mathrm{r}_{\mathrm{a}(\mathrm{d})}$, being new results.

$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	n_{II}	$\mathrm{J}_{\mathrm{scII}\left(\frac{\mathrm{mA}}{\mathrm{mm}^{2}}\right)}$	$\mathrm{F}_{\mathrm{II}}(\%)$	$\eta_{\mathrm{II}}(\%)$

Here, $\mathbf{x}=\mathbf{0}$. For the $\left(\mathrm{Mg}^{+} \mathrm{As}, \mathrm{Cd}^{+} \mathrm{Sn}\right)$-junctions, the value of $\boldsymbol{\beta}$ given in Eq. (46) is $\mathbf{1 . 0 4 5 2}$.

$\mathbf{0 . 9 8 0}$	$0.742 ; 0.733$	$24.20 ; 24.20$	$90.50 ; 90.59$	$21.46 ; 21.48$
$\mathbf{1 . 0 3}$	$0.777 ; 0.767$	$29.90 ; 29.98$	$90.53 ; 90.62$	$27.88 ; 27.98$
1.16	$0.874 ; 0.863$	$30.84 ; 30.92$	$90.53 ; 90.63$	$32.38 ; 32.51$
$\mathbf{1 . 1 7}$	$0.882 ; 1.036$	$30.58 ; 33.14$	$90.53 ; 88.60$	$\mathbf{3 2 . 3 9} ; \mathbf{3 2 . 5 1}$
			$\mathbf{V}_{\text {ocil }}=\mathbf{1 . 1 7} \mathbf{V}$	$\mathbf{4 4 3 . 7} \mathbf{4 4 4 . 5 = \mathbf { T } _ { \mathbf { H } } (\mathbf { K })}$
1.18	$0.890 ; 1.083$	$30.29 ; 33.14$	$90.53 ; 88.60$	$32.36 ; 32.47$
2	$1.553 ; 3.315$	$7.035 ; 33.14$	$90.31 ; 88.60$	$12.71 ; 12.50$

Here, $\mathbf{x}=\mathbf{0 . 5}$. For the $\left(\mathrm{Mg}^{+} \mathrm{As}^{2}, \mathrm{Cd}^{+} \mathrm{Sn}\right)$-junctions, the value of $\boldsymbol{\beta}$ given in Eq. (46) is $\mathbf{1 . 0 4 7 6}$.

$\mathrm{p}^{+} \mathrm{n}$	$\mathrm{Mg}^{+}{\mathrm{As} ; \mathrm{Cd}^{+} \mathrm{Sn}}^{\text {n }}$	$\mathrm{Mg}^{+} \mathrm{Ass}^{\text {c }} \mathrm{Cd}{ }^{+} \mathrm{Sn}$	$\mathrm{Mg}^{+} \mathrm{As} ; \mathrm{Cd}^{+} \mathrm{Sn} \quad \mathrm{Mg}^{+} \mathrm{Ass}^{\text {cd }} \mathrm{Cd}^{+} \mathrm{Sn}$	
0.980	0.824; 0.815	24.20; 24.20	89.69; 89.78	21.27; 21.29
1.03	0.863; 0.853	29.74; 29.80	89.72; 89.81	27.48; 27.57
1.17	0.979; 0.968	30.84; 30.92	89.73; 89.82	32.39; 32.49
1.18	0.988; 0.977	30.60; 30.67	89.73; 89.82	32.40; 32.51
			$\mathrm{V}_{\text {ocil }}=1.18 \mathrm{~V}$	443.8; $444.5=\mathrm{T}_{\mathrm{H}}(\mathrm{K})$
1.19	0.996; 0.985	30.34; 33.40	89.73; 89.82	32.39; 32.49
2	1.724; 1.705	8.022; 7.915	89.49; 89.58	14.36; 14.18

Here, $\mathbf{x}=\mathbf{1}$. For the $\left(\mathrm{Mg}^{+} A s, \mathrm{Cd}^{+} \mathrm{Sn}_{\mathrm{n}}\right)$-junctions, the value of $\boldsymbol{\beta}$ given in Eq. (46) is $\mathbf{1} .0519$.

$\mathrm{p}^{+} \mathrm{n}$	$\mathrm{Mg}^{+} \mathrm{As}^{\text {c }} \mathrm{C}{ }^{+} \mathrm{Sn}$	$\mathrm{Mg}^{+} \mathrm{As}^{\text {c }} \mathrm{C}{ }^{+} \mathrm{Sn}$	$\mathrm{Mg}^{+} \mathrm{As} \mathrm{CC} \mathrm{C}^{+} \mathrm{Sn} \quad \mathrm{Mg}^{+} \mathrm{As}^{\text {cd }} \mathrm{Cd}^{+} \mathrm{Sn}$	
0.980	0.921; 0.912	24.20; 24.20	88.77; 88.86	21.05; 21.07
1.03	0.963; 0.953	29.82; 29.88	88.81; 88.90	27.28; 27.36
1.19	1.111; 1.100	31.17; 31.24	88.82; 88.91	32.95; 33.05
1.20	1.121; 1.110	30.93; 30.99	88.82; 88.91	32.97; 33.07
			$\mathrm{V}_{\text {ocll }}=1.20 \mathrm{~V}$	447.6; 448.2 $=\mathrm{T}_{\mathrm{H}}(\mathrm{K})$
1.21	1.130; 1.119	30.66; 30.72	88.82; 88.90	32.96; 33.05
2	1.925; 1.906	9.071; 8.974	88.56; 88.65	16.07; 15.91

